1 resultado para Continuous-time Markov Chain
em Nottingham eTheses
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (29)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (82)
- CentAUR: Central Archive University of Reading - UK (52)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (19)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (13)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (21)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (53)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (67)
- Queensland University of Technology - ePrints Archive (153)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (15)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (169)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (27)
- University of Queensland eSpace - Australia (15)
- University of Southampton, United Kingdom (3)
- University of Washington (2)
- WestminsterResearch - UK (5)
Resumo:
Statistical methodology is proposed for comparing molecular shapes. In order to account for the continuous nature of molecules, classical shape analysis methods are combined with techniques used for predicting random fields in spatial statistics. Applying a modification of Procrustes analysis, Bayesian inference is carried out using Markov chain Monte Carlo methods for the pairwise alignment of the resulting molecular fields. Superimposing entire fields rather than the configuration matrices of nuclear positions thereby solves the problem that there is usually no clear one--to--one correspondence between the atoms of the two molecules under consideration. Using a similar concept, we also propose an adaptation of the generalised Procrustes analysis algorithm for the simultaneous alignment of multiple molecular fields. The methodology is applied to a dataset of 31 steroid molecules.