1 resultado para Classical-quantum interfaces
em Nottingham eTheses
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (116)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Brock University, Canada (7)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (8)
- Cochin University of Science & Technology (CUSAT), India (25)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (170)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Deposito de Dissertacoes e Teses Digitais - Portugal (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Diposit Digital de la UB - Universidade de Barcelona (41)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (45)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (10)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (10)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (10)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (35)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (22)
- Scielo Saúde Pública - SP (34)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (7)
- Universitat de Girona, Spain (16)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (17)
- Université de Lausanne, Switzerland (79)
- Université de Montréal, Canada (24)
- University of Connecticut - USA (2)
- University of Queensland eSpace - Australia (199)
- University of Southampton, United Kingdom (5)
- University of Washington (2)
Resumo:
Recent work on state sum models of quantum gravity in 3 and 4 dimensions has led to interest in the `quantum tetrahedron'. Starting with a classical phase space whose points correspond to geometries of the tetrahedron in R^3, we use geometric quantization to obtain a Hilbert space of states. This Hilbert space has a basis of states labeled by the areas of the faces of the tetrahedron together with one more quantum number, e.g. the area of one of the parallelograms formed by midpoints of the tetrahedron's edges. Repeating the procedure for the tetrahedron in R^4, we obtain a Hilbert space with a basis labelled solely by the areas of the tetrahedron's faces. An analysis of this result yields a geometrical explanation of the otherwise puzzling fact that the quantum tetrahedron has more degrees of freedom in 3 dimensions than in 4 dimensions.