3 resultados para Clarke, Frank G., 1850-1901.

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with SIR (susceptible--infected--removed) household epidemic models in which the infection response may be either mild or severe, with the type of response also affecting the infectiousness of an individual. Two different models are analysed. In the first model, the infection status of an individual is predetermined, perhaps due to partial immunity, and in the second, the infection status of an individual depends on the infection status of its infector and on whether the individual was infected by a within- or between-household contact. The first scenario may be modelled using a multitype household epidemic model, and the second scenario by a model we denote by the infector-dependent-severity household epidemic model. Large population results of the two models are derived, with the focus being on the distribution of the total numbers of mild and severe cases in a typical household, of any given size, in the event that the epidemic becomes established. The aim of the paper is to investigate whether it is possible to determine which of the two underlying explanations is causing the varying response when given final size household outbreak data containing mild and severe cases. We conduct numerical studies which show that, given data on sufficiently many households, it is generally possible to discriminate between the two models by comparing the Kullback-Leibler divergence for the two fitted models to these data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with a stochastic SIR (susceptible-infective-removed) model for the spread of an epidemic amongst a population of individuals, with a random network of social contacts, that is also partitioned into households. The behaviour of the model as the population size tends to infinity in an appropriate fashion is investigated. A threshold parameter which determines whether or not an epidemic with few initial infectives can become established and lead to a major outbreak is obtained, as are the probability that a major outbreak occurs and the expected proportion of the population that are ultimately infected by such an outbreak, together with methods for calculating these quantities. Monte Carlo simulations demonstrate that these asymptotic quantities accurately reflect the behaviour of finite populations, even for only moderately sized finite populations. The model is compared and contrasted with related models previously studied in the literature. The effects of the amount of clustering present in the overall population structure and the infectious period distribution on the outcomes of the model are also explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers a stochastic SIR (susceptible-infective-removed) epidemic model in which individuals may make infectious contacts in two ways, both within 'households' (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically-motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly-sized finite populations. The extension to unequal sized households is discussed briefly.