1 resultado para Chase, Plummer.
em Nottingham eTheses
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (3)
- Aston University Research Archive (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (60)
- Boston University Digital Common (1)
- Brock University, Canada (12)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (49)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- CUNY Academic Works (3)
- Digital Archives@Colby (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (10)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (4)
- Ecology and Society (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Glasgow Theses Service (2)
- Harvard University (7)
- Helda - Digital Repository of University of Helsinki (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (5)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (24)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (12)
- Portal de Revistas Científicas Complutenses - Espanha (6)
- Publishing Network for Geoscientific & Environmental Data (44)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (28)
- Queensland University of Technology - ePrints Archive (19)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (15)
- Universidad Politécnica de Madrid (1)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (4)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (240)
- University of Queensland eSpace - Australia (12)
- WestminsterResearch - UK (1)
Resumo:
This paper explores, both with empirical data and with computer simulations, the extent to which modularity characterises experts' knowledge. We discuss a replication of Chase and Simon's (1973) classic method of identifying 'chunks', i.e., perceptual patterns stored in memory and used as units. This method uses data about the placement of pairs of items in a memory task and consists of comparing latencies between these items and the number and type of relations they share. We then compare the human data with simulations carried out with CHREST, a computer model of perception and memory. We show that the model, based upon the acquisition of a large number of chunks, accounts for the human data well. This is taken as evidence that human knowledge is organised in a modular fashion.