8 resultados para Characteristic Initial Value Problem

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the evolution of a bistable reaction in a one-dimensional stretching flow, as a model for chaotic advection. We derive two reduced systems of ordinary differential equations (ODEs) for the dynamics of the governing advection-reaction-diffusion partial differential equations (PDE), for pulse-like and for plateau-like solutions, based on a non-perturbative approach. This reduction allows us to study the dynamics in two cases: first, close to a saddle-node bifurcation at which a pair of nontrivial steady states are born as the dimensionless reaction rate (Damkoehler number) is increased, and, second, for large Damkoehler number, far away from the bifurcation. The main aim is to investigate the initial-value problem and to determine when an initial condition subject to chaotic stirring will decay to zero and when it will give rise to a nonzero final state. Comparisons with full PDE simulations show that the reduced pulse model accurately predicts the threshold amplitude for a pulse initial condition to give rise to a nontrivial final steady state, and that the reduced plateau model gives an accurate picture of the dynamics of the system at large Damkoehler number. Published in Physica D (2006)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract- A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: This paper reports a lot-sizing and scheduling problem, which minimizes inventory and backlog costs on m parallel machines with sequence-dependent set-up times over t periods. Problem solutions are represented as product subsets ordered and/or unordered for each machine m at each period t. The optimal lot sizes are determined applying a linear program. A genetic algorithm searches either over ordered or over unordered subsets (which are implicitly ordered using a fast ATSP-type heuristic) to identify an overall optimal solution. Initial computational results are presented, comparing the speed and solution quality of the ordered and unordered genetic algorithm approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract- A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is concerned with the design and analysis of hp-version discontinuous Galerkin (DG) finite element methods for boundary-value problems involving the biharmonic operator. The first part extends the unified approach of Arnold, Brezzi, Cockburn & Marini (SIAM J. Numer. Anal. 39, 5 (2001/02), 1749-1779) developed for the Poisson problem, to the design of DG methods via an appropriate choice of numerical flux functions for fourth order problems; as an example we retrieve the interior penalty DG method developed by Suli & Mozolevski (Comput. Methods Appl. Mech. Engrg. 196, 13-16 (2007), 1851-1863). The second part of this work is concerned with a new a-priori error analysis of the hp-version interior penalty DG method, when the error is measured in terms of both the energy-norm and L2-norm, as well certain linear functionals of the solution, for elemental polynomial degrees $p\ge 2$. Also, provided that the solution is piecewise analytic in an open neighbourhood of each element, exponential convergence is also proven for the p-version of the DG method. The sharpness of the theoretical developments is illustrated by numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is concerned with the numerical detection of bifurcation points of nonlinear partial differential equations as some parameter of interest is varied. In particular, we study in detail the numerical approximation of the Bratu problem, based on exploiting the symmetric version of the interior penalty discontinuous Galerkin finite element method. A framework for a posteriori control of the discretization error in the computed critical parameter value is developed based upon the application of the dual weighted residual (DWR) approach. Numerical experiments are presented to highlight the practical performance of the proposed a posteriori error estimator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse’s assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.