3 resultados para Chaotic behaviors
em Nottingham eTheses
Resumo:
We implement conditional moment closure (CMC) for simulation of chemical reactions in laminar chaotic flows. The CMC approach predicts the expected concentration of reactive species, conditional upon the concentration of a corresponding nonreactive scalar. Closure is obtained by neglecting the difference between the local concentration of the reactive scalar and its conditional average. We first use a Monte Carlo method to calculate the evolution of the moments of a conserved scalar; we then reconstruct the corresponding probability density function and dissipation rate. Finally, the concentrations of the reactive scalars are determined. The results are compared (and show excellent agreement) with full numerical simulations of the reaction processes in a chaotic laminar flow. This is a preprint of an article published in AlChE Journal copyright (2007) American Institute of Chemical Engineers: http://www3.interscience.wiley.com/
Resumo:
The evolution of a competitive-consecutive chemical reaction is computed numerically in a two-dimensional chaotic fluid flow with initially segregated reactants. Results from numerical simulations are used to evaluate a variety of reduced models commonly adopted to model the full advection-reaction-diffusion problem. Particular emphasis is placed upon fast reactions, where the yield varies most significantly with Peclet number (the ratio of diffusive to advective time scales). When effects of the fluid mechanical mixing are strongest, we find that the yield of the reaction is underestimated by a one-dimensional lamellar model that ignores the effects of fluid mixing, but overestimated by two other lamellar models that include fluid mixing.
Resumo:
We describe and evaluate two reduced models for nonlinear chemical reactions in a chaotic laminar flow. Each model involves two separate steps to compute the chemical composition at a given location and time. The “manifold tracking model” first tracks backwards in time a segment of the stable manifold of the requisite point. This then provides a sample of the initial conditions appropriate for the second step, which requires solving one-dimensional problems for the reaction in Lagrangian coordinates. By contrast, the first step of the “branching trajectories model” simulates both the advection and diffusion of fluid particles that terminate at the appropriate point; the chemical reaction equations are then solved along each of the branched trajectories in a second step. Results from each model are compared with full numerical simulations of the reaction processes in a chaotic laminar flow.