3 resultados para Central pulse pressure
em Nottingham eTheses
Resumo:
High blood pressure (BP), pulse pressure (PP), and rate pressure product (RPP) areeach associated independently with a poor outcome in acute ischemic stroke. Whereas nitric oxide (NO) donors, such as glyceryl trinitrate (GTN), lower blood pressure in acute ischemic stroke, their effect on other hemodynamic measures is not known. We performed a systematic review of the effects of NO donors on systemic hemodynamic measures in patients with acute/subacute stroke. Randomized controlled trials were identified from searches of the Cochrane Library, Pubmed, and Embase. Information on hemodynamic measures, including systolic BP (SBP), diastolic BP (DBP), and heart rate, were assessed, and hemodynamic derivatives of these were calculated: PP (PP SBP DBP), mean arterial pressure (MAP DBP PP/3), mid blood pressure (MBP (SBP DBP)/2), pulse pressure index (PPI PP/MAP), and RPP (RPP SBP HR). The effect of treatment on hemodynamic measures was calculated as the weighted mean difference (WMD) between treated and control groups with adjustment for baseline. Results: Three trials involving 145 patients were identified; 93 patients received the NO donor, GTN, and 52 control. As compared with placebo, GTN significantly reduced SBP (WMD -9.80 mmHg, p< 0.001), DBP (WMD -4.43 mmHg, p<0.001), MAP (WMD -6.41 mmHg, p< 0.001), MBP (WMD -7.33 mmHg,p<0.001), PP (WMD -6.11 mmHg, p<0.001 ) and PPI (WMD -0.03, p=0.04 ). 3 GTN increased HR (WMD +3.87 bpm, p<0.001) and non-significantly lowered RPP (WMD -323 mmHg.bpm, p=0.14). Conclusion: The NO donor GTN reduces BP, PP and other derivatives in acute and subacute stroke whilst increasing heart rate.
Resumo:
Background and Purpose—High blood pressure (BP) is common in acute ischemic stroke and associated independently with a poor functional outcome. However, the management of BP acutely remains unclear because no large trials have been completed. Methods—The factorial PRoFESS secondary stroke prevention trial assessed BP-lowering and antiplatelet strategies in 20 332 patients; 1360 were enrolled within 72 hours of ischemic stroke, with telmisartan (angiotensin receptor antagonist, 80 mg/d, n647) vs placebo (n713). For this nonprespecified subgroup analysis, the primary outcome was functional outcome at 30 days; secondary outcomes included death, recurrence, and hemodynamic measures at up to 90 days. Analyses were adjusted for baseline prognostic variables and antiplatelet assignment. Results—Patients were representative of the whole trial (age 67 years, male 65%, baseline BP 147/84 mm Hg, small artery disease 60%, NIHSS 3) and baseline variables were similar between treatment groups. The mean time from stroke to recruitment was 58 hours. Combined death or dependency (modified Rankin scale: OR, 1.03; 95% CI, 0.84–1.26; P0.81; death: OR, 1.05; 95% CI, 0.27–4.04; and stroke recurrence: OR, 1.40; 95% CI, 0.68–2.89; P0.36) did not differ between the treatment groups. In comparison with placebo, telmisartan lowered BP (141/82 vs 135/78 mmHg, difference 6 to 7 mmHg and 2 to 4 mmHg; P0.001), pulse pressure (3 to 4 mmHg; P0.002), and rate-pressure product (466 mmHg.bpm; P0.0004). Conclusion—Treatment with telmisartan in 1360 patients with acute mild ischemic stroke and mildly elevated BP appeared to be safe with no excess in adverse events, was not associated with a significant effect on functional dependency, death, or recurrence, and modestly lowered BP.
Resumo:
Amphetamine enhances recovery after experimental ischaemia and has shown promise in small clinical trials when combined with motor or sensory stimulation. Amphetamine, a sympathomimetic, might have haemodynamic effects in stroke patients, although limited data have been published. Subjects were recruited 3-30 days post ischaemic stroke into a phase II randomised (1:1), double blind, placebo-controlled trial. Subjects received dexamphetamine (5mg initially, then 10mg for 10 subsequent doses with 3 or 4 day separations) or placebo in addition to inpatient physiotherapy. Recovery was assessed by motor scales (Fugl-Meyer, FM), and functional scales (Barthel index, BI and modified Rankin score, mRS). Peripheral blood pressure (BP), central haemodynamics and middle cerebral artery blood flow velocity were assessed before, and 90 minutes after, the first 2 doses. 33 subjects were recruited, age 33-88 (mean 71) years, males 52%, 4-30 (median 15) days post stroke to inclusion. 16 patients were randomised to placebo and 17 amphetamine. Amphetamine did not improve motor function at 90 days; mean (standard deviation) FM 37.6 (27.6) vs. control 35.2 (27.8) (p=0.81). Functional outcome (BI, mRS) did not differ between treatment groups. Peripheral and central systolic BP, and heart rate, were 11.2 mmHg (p=0.03), 9.5 mmHg (p=0.04) and 7 beats/minute (p=0.02) higher respectively with amphetamine, compared with control. A non-significant reduction in myocardial perfusion (Buckberg Index) was seen with amphetamine. Other cardiac and cerebral haemodynamics were unaffected. Amphetamine did not improve motor impairment or function after ischaemic stroke but did significantly increase BP and heart rate without altering cerebral haemodynamics.