2 resultados para Cell Lifespan: Cell Proliferation: Lymphocyte Half Lives: Lognormal

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oocyte control of granulosa and theca cell function may be mediated by several growth factors via a local feedback loop(s) between these cell types. This study examined both the role of oocyte-secreted factors on granulosa and thecal cells, cultured independently and in co-culture, and the effect of stem cell factor (SCF); a granulosa cell derived peptide that appears to have multiple roles in follicle development. Granulosa and theca cells were isolated from 2-6 mm healthy follicles of mature porcine ovaries and cultured under serum-free conditions, supplemented with: 100 ng/ml LR3 IGF-1, 10 ng/ml insulin, 100 ng/ml testosterone, 0-10 ng/ml SCF, 1 ng/ml FSH (granulosa), 0.01 ng/ml LH (theca) or 1 ng/ml FSH and 0.01 ng/ml LH (co-culture) and with/without oocyte conditioned medium (OCM) or 5 oocytes. Cells were cultured in 96 well plates for 144 h, after which viable cell numbers were determined. Medium was replaced every 48 h and spent medium analysed for steroids.Oocyte secreted factors were shown to stimulate both granulosa cell proliferation (P < 0.001) and oestradiol production (P < 0.001) by granulosa cells throughout culture. In contrast, oocyte secreted factors suppressed granulosa cell progesterone production after both 48 and 144 hours (P < 0.001). Thecal cell numbers were increased by oocyte secreted factors (P = 0.02), together with a suppression in progesterone and androstenedione synthesis after 48 hours (P < 0.001) and after 144 hours (P = 0.02), respectively. Oocyte secreted factors also increased viable cell numbers (P < 0.001) in co-cultures together with suppression of progesterone (P < 0.001) and oestradiol (P < 0.001). In granulosa cell only cultures, SCF increased progesterone production in a dose dependent manner (P < 0.001), whereas progesterone synthesis by theca cells was reduced in a dose dependent manner (P = 0.002). Co-cultured cells demonstrated an increase in progesterone production with increasing SCF dose (P < 0.001) and an increase in oestradiol synthesis at the highest dose of SCF (100 ng/ml). In summary, these findings demonstrate the presence of a co-ordinated paracrine interaction between somatic cells and germ cells, whereby oocyte derived signals interact locally to mediate granulosa and theca cell function. SCF has a role in modulating this local interaction. In conclusion, the oocyte is an effective modulator of granulosa-theca interactions, one role being the inhibition of luteinization

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) including nitric oxide (NO) and superoxide anion (O2-) are associated with cell migration, proliferation and many growth-related diseases. The objective of this study was to determine whether there was a reciprocal relationship between rat coronary microvascular endothelial cell (CMEC) growth and activity/expressions (mRNA and protein) of endothelial NO synthase (eNOS) and NAD(P)H oxidase enzymes. Proliferating namely, 50% confluent CMEC possessed approximately three-fold increased activity and expression of both enzymes compared to 100% confluent cells. Treatment of CMEC with an inhibitor of eNOS (L-NAME, 100M) increased cell proliferation as assessed via three independent methods i.e. cell counting, determination of total cellular protein levels and [3H]thymidine incorporation. Similarly, treatment of CMEC with pyrogallol (0.3-3 mM), a superoxide anion (O2-)- generator, also increased CMEC growth while spermine NONOate (SpNO), a NO donor, significantly reduced cell growth. Co-incubation of CMEC with a cell permeable superoxide dismutase mimetic (Mn-III-tetrakis-4-benzoic acid-porphyrin; MnTBAP) plus either pyrogallol or NO did not alter cell number and DNA synthesis thereby dismissing the involvement of peroxynitrite (OONO-) in CMEC proliferation. Specific inhibitors of NAD(P)H oxidase but not other ROS-generating enzymes including cyclooxygenase and xanthine oxidase, attenuated cell growth. Transfection of CMEC with antisense p22-phox cDNA, a membrane-bound component of NAD(P)H oxidase, resulted in substantial reduction in [3H]thymidine incorporation, total cellular protein levels and expression of p22-phox protein. These data demonstrate a cross-talk between CMEC growth and eNOS and NAD(P)H oxidase enzyme activity and expression, thus suggesting that the regulation of these enzymes may be critical in preventing the initiation and/or progression of coronary atherosclerosis.