2 resultados para CORRELATION NETWORKS
em Nottingham eTheses
Resumo:
In the past few years, IRC bots, malicious programs which are remotely controlled by the attacker through IRC servers, have become a major threat to the Internet and users. These bots can be used in different malicious ways such as issuing distributed denial of services attacks to shutdown other networks and services, keystrokes logging, spamming, traffic sniffing cause serious disruption on networks and users. New bots use peer to peer (P2P) protocols start to appear as the upcoming threat to Internet security due to the fact that P2P bots do not have a centralized point to shutdown or traceback, thus making the detection of P2P bots is a real challenge. In response to these threats, we present an algorithm to detect an individual P2P bot running on a system by correlating its activities. Our evaluation shows that correlating different activities generated by P2P bots within a specified time period can detect these kind of bots.
Resumo:
The premise of automated alert correlation is to accept that false alerts from a low level intrusion detection system are inevitable and use attack models to explain the output in an understandable way. Several algorithms exist for this purpose which use attack graphs to model the ways in which attacks can be combined. These algorithms can be classified in to two broad categories namely scenario-graph approaches, which create an attack model starting from a vulnerability assessment and type-graph approaches which rely on an abstract model of the relations between attack types. Some research in to improving the efficiency of type-graph correlation has been carried out but this research has ignored the hypothesizing of missing alerts. Our work is to present a novel type-graph algorithm which unifies correlation and hypothesizing in to a single operation. Our experimental results indicate that the approach is extremely efficient in the face of intensive alerts and produces compact output graphs comparable to other techniques.