1 resultado para C28S triaromatic steroid
em Nottingham eTheses
Filtro por publicador
- Repository Napier (2)
- University of Cagliari UniCA Eprints (1)
- Aberdeen University (3)
- Academic Archive On-line (Stockholm University; Sweden) (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Aston University Research Archive (23)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (35)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (116)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (2)
- CentAUR: Central Archive University of Reading - UK (23)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (9)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (7)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (19)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (21)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (47)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (1)
- National Center for Biotechnology Information - NCBI (82)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (66)
- Queensland University of Technology - ePrints Archive (57)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (180)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scientific Open-access Literature Archive and Repository (6)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (3)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (6)
- Université de Montréal (2)
- Université de Montréal, Canada (14)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (18)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Statistical methodology is proposed for comparing molecular shapes. In order to account for the continuous nature of molecules, classical shape analysis methods are combined with techniques used for predicting random fields in spatial statistics. Applying a modification of Procrustes analysis, Bayesian inference is carried out using Markov chain Monte Carlo methods for the pairwise alignment of the resulting molecular fields. Superimposing entire fields rather than the configuration matrices of nuclear positions thereby solves the problem that there is usually no clear one--to--one correspondence between the atoms of the two molecules under consideration. Using a similar concept, we also propose an adaptation of the generalised Procrustes analysis algorithm for the simultaneous alignment of multiple molecular fields. The methodology is applied to a dataset of 31 steroid molecules.