3 resultados para Burden of proof
em Nottingham eTheses
Resumo:
We present a framework for describing proof planners. This framework is based around a decomposition of proof planners into planning states, proof language, proof plans, proof methods, proof revision, proof control and planning algorithms. We use this framework to motivate the comparison of three recent proof planning systems, lclam, OMEGA and IsaPlanner, and demonstrate how the framework allows us to discuss and illustrate both their similarities and differences in a consistent fashion. This analysis reveals that proof control and the use of contextual information in planning states are key areas in need of further investigation.
Resumo:
This paper reports the use of proof planning to diagnose errors in program code. In particular it looks at the errors that arise in the base cases of recursive programs produced by undergraduates. It describes two classes of error that arise in this situation. The use of test cases would catch these errors but would fail to distinguish between them. The system adapts proof critics, commonly used to patch faulty proofs, to diagnose such errors and distinguish between the two classes. It has been implemented in Lambda-clam, a proof planning system, and applied successfully to a small set of examples.
Resumo:
Coinduction is a proof rule. It is the dual of induction. It allows reasoning about non--well--founded structures such as lazy lists or streams and is of particular use for reasoning about equivalences. A central difficulty in the automation of coinductive proof is the choice of a relation (called a bisimulation). We present an automation of coinductive theorem proving. This automation is based on the idea of proof planning. Proof planning constructs the higher level steps in a proof, using knowledge of the general structure of a family of proofs and exploiting this knowledge to control the proof search. Part of proof planning involves the use of failure information to modify the plan by the use of a proof critic which exploits the information gained from the failed proof attempt. Our approach to the problem was to develop a strategy that makes an initial simple guess at a bisimulation and then uses generalisation techniques, motivated by a critic, to refine this guess, so that a larger class of coinductive problems can be automatically verified. The implementation of this strategy has focused on the use of coinduction to prove the equivalence of programs in a small lazy functional language which is similar to Haskell. We have developed a proof plan for coinduction and a critic associated with this proof plan. These have been implemented in CoClam, an extended version of Clam with encouraging results. The planner has been successfully tested on a number of theorems.