5 resultados para Breathers

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter we introduce a continuum model of neural tissue that include the effects of so-called spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity that depends upon the non-local network connectivity, synaptic response, and firing rate of a single neuron. A phenomenological model of SFA is examined whereby the firing rate is taken to be a simple state-dependent threshold function. As in the case without SFA classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps). Importantly an analysis of bump stability using recent Evans function techniques shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. Direct numerical simulations both confirm our theoretical predictions and illustrate the rich dynamic behavior of this model, including the appearance of self-replicating bumps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a eduction to a cubic nonlinear Schr{\"o}dinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, symptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt \& Wattis, {\em J Phys A}, {\bf 39}, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using asymptotic methods, we investigate whether discrete breathers are supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component) two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within an electrical transmission lattice. A third-order multiple-scale analysis in the semi-discrete limit fails, since at this order, the lattice equations reduce to the (2+1)-dimensional cubic nonlinear Schrödinger (NLS) equation which does not support stable soliton solutions for the breather envelope. We therefore extend the analysis to higher order and find a generalised $(2+1)$-dimensional NLS equation which incorporates higher order dispersive and nonlinear terms as perturbations. We find an ellipticity criterion for the wave numbers of the carrier wave. Numerical simulations suggest that both stationary and moving breathers are supported by the system. Calculations of the energy show the expected threshold behaviour whereby the energy of breathers does {\em not} go to zero with the amplitude; we find that the energy threshold is maximised by stationary breathers, and becomes arbitrarily small as the boundary of the domain of ellipticity is approached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we consider a neural field model comprised of two distinct populations of neurons, excitatory and inhibitory, for which both the velocities of action potential propagation and the time courses of synaptic processing are different. Using recently-developed techniques we construct the Evans function characterising the stability of both stationary and travelling wave solutions, under the assumption that the firing rate function is the Heaviside step. We find that these differences in timing for the two populations can cause instabilities of these solutions, leading to, for example, stationary breathers. We also analyse $quot;anti-pulses,$quot; a novel type of pattern for which all but a small interval of the domain (in moving coordinates) is active. These results extend previous work on neural fields with space dependent delays, and demonstrate the importance of considering the effects of the different time-courses of excitatory and inhibitory neural activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).