2 resultados para Behaviour Patterns

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many mathematical models for pattern formation, a regular hexagonal pattern is stable in an infinite region. However, laboratory and numerical experiments are carried out in finite domains, and this imposes certain constraints on the possible patterns. In finite rectangular domains, it is shown that a regular hexagonal pattern cannot occur if the aspect ratio is rational. In practice, it is found experimentally that in a rectangular region, patterns of irregular hexagons are often observed. This work analyses the geometry and dynamics of irregular hexagonal patterns. These patterns occur in two different symmetry types, either with a reflection symmetry, involving two wavenumbers, or without symmetry, involving three different wavenumbers. The relevant amplitude equations are studied to investigate the detailed bifurcation structure in each case. It is shown that hexagonal patterns can bifurcate subcritically either from the trivial solution or from a pattern of rolls. Numerical simulations of a model partial differential equation are also presented to illustrate the behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural field models of firing rate activity have had a major impact in helping to develop an understanding of the dynamics seen in brain slice preparations. These models typically take the form of integro-differential equations. Their non-local nature has led to the development of a set of analytical and numerical tools for the study of waves, bumps and patterns, based around natural extensions of those used for local differential equation models. In this paper we present a review of such techniques and show how recent advances have opened the way for future studies of neural fields in both one and two dimensions that can incorporate realistic forms of axo-dendritic interactions and the slow intrinsic currents that underlie bursting behaviour in single neurons.