3 resultados para Bayesian hierarchical models

em Nottingham eTheses


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated cow characteristics, farm facilities, and herd management strategies during the dry period to examine their joint influence on somatic cell counts (SCC) in early lactation. Data from 52 commercial dairy farms throughout England and Wales were collected over a 2-yr period. For the purpose of analysis, cows were separated into those housed for the dry period (6,419 cow-dry periods) and those at pasture (7,425 cow-dry periods). Bayesian multilevel models were specified with 2 response variables: ln SCC (continuous) and SCC >199,000 cells/mL (binary), both within 30 d of calving. Cow factors associated with an increased SCC after calving were parity, an SCC >199,000 cells/mL in the 60 d before drying off, increasing milk yield 0 to 30 d before drying off, and reduced DIM after calving at the time of SCC estimation. Herd management factors associated with an increased SCC after calving included procedures at drying off, aspects of bedding management, stocking density, and method of pasture grazing. Posterior predictions were used for model assessment, and these indicated that model fit was generally good. The research demonstrated that specific dry-period management strategies have an important influence on SCC in early lactation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our research has shown that schedules can be built mimicking a human scheduler by using a set of rules that involve domain knowledge. This chapter presents a Bayesian Optimization Algorithm (BOA) for the nurse scheduling problem that chooses such suitable scheduling rules from a set for each nurse’s assignment. Based on the idea of using probabilistic models, the BOA builds a Bayesian network for the set of promising solutions and samples these networks to generate new candidate solutions. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed algorithm may be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fundamental objective for health research is to determine whether changes should be made to clinical decisions. Decisions made by veterinary surgeons in the light of new research evidence are known to be influenced by their prior beliefs, especially their initial opinions about the plausibility of possible results. In this paper, clinical trial results for a bovine mastitis control plan were evaluated within a Bayesian context, to incorporate a community of prior distributions that represented a spectrum of clinical prior beliefs. The aim was to quantify the effect of veterinary surgeons’ initial viewpoints on the interpretation of the trial results. A Bayesian analysis was conducted using Markov chain Monte Carlo procedures. Stochastic models included a financial cost attributed to a change in clinical mastitis following implementation of the control plan. Prior distributions were incorporated that covered a realistic range of possible clinical viewpoints, including scepticism, enthusiasm and uncertainty. Posterior distributions revealed important differences in the financial gain that clinicians with different starting viewpoints would anticipate from the mastitis control plan, given the actual research results. For example, a severe sceptic would ascribe a probability of 0.50 for a return of <£5 per cow in an average herd that implemented the plan, whereas an enthusiast would ascribe this probability for a return of >£20 per cow. Simulations using increased trial sizes indicated that if the original study was four times as large, an initial sceptic would be more convinced about the efficacy of the control plan but would still anticipate less financial return than an initial enthusiast would anticipate after the original study. In conclusion, it is possible to estimate how clinicians’ prior beliefs influence their interpretation of research evidence. Further research on the extent to which different interpretations of evidence result in changes to clinical practice would be worthwhile.