2 resultados para Bacillus thuringiensis.

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bacillus subtilis DnaI, DnaB and DnaD proteins load the replicative ring helicase DnaC onto DNA during priming of DNA replication. Here we show that DnaI consists of a C-terminal domain (Cd) with ATPase and DNA-binding activities and an N-terminal domain (Nd) that interacts with the replicative ring helicase. A Zn2+-binding module mediates the interaction with the helicase and C67, C70 and H84 are involved in the coordination of the Zn2+. DnaI binds ATP and exhibits ATPase activity that is not stimulated by ssDNA, because the DNA-binding site on Cd is masked by Nd. The ATPase activity resides on the Cd domain and when detached from the Nd domain, it becomes sensitive to stimulation by ssDNA because its cryptic DNA-binding site is exposed. Therefore, Nd acts as a molecular 'switch' regulating access to the ssDNA binding site on Cd, in response to binding of the helicase. DnaI is sufficient to load the replicative helicase from a complex with six DnaI molecules, so there is no requirement for a dual helicase loader system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The essential Bacillus subtilis DnaD and DnaB proteins have been implicated in the initiation of DNA replication. Recently, DNA remodeling activities associated with both proteins were discovered that could provide a link between global or local nucleoid remodeling and initiation of replication. DnaD forms scaffolds and opens up supercoiled plasmids without nicking to form open circular complexes, while DnaB acts as a lateral compaction protein. Here we show that DnaD-mediated opening of supercoiled plasmids is accompanied by significant untwisting of DNA. The net result is the conversion of writhe (Wr) into negative twist (Tw), thus maintaining the linking number (Lk) constant. These changes in supercoiling will reduce the considerable energy required to open up closed circular plectonemic DNA and may be significant in the priming of DNA replication. By comparison, DnaB does not affect significantly the supercoiling of plasmids. Binding of the DnaD C-terminal domain (Cd) to DNA is not sufficient to convert Wr into negative Tw, implying that the formation of scaffolds is essential for duplex untwisting. Overall, our data suggest that the topological effects of the two proteins on supercoiled DNA are different; DnaD opens up, untwists and converts plectonemic DNA to a more paranemic form, whereas DnaB does not affect supercoiling significantly and condenses DNA only via its lateral compaction activity. The significance of these findings in the initiation of DNA replication is discussed.