5 resultados para BINARY RESPONSE MODELS
em Nottingham eTheses
Resumo:
Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.
Resumo:
This paper is concerned with SIR (susceptible--infected--removed) household epidemic models in which the infection response may be either mild or severe, with the type of response also affecting the infectiousness of an individual. Two different models are analysed. In the first model, the infection status of an individual is predetermined, perhaps due to partial immunity, and in the second, the infection status of an individual depends on the infection status of its infector and on whether the individual was infected by a within- or between-household contact. The first scenario may be modelled using a multitype household epidemic model, and the second scenario by a model we denote by the infector-dependent-severity household epidemic model. Large population results of the two models are derived, with the focus being on the distribution of the total numbers of mild and severe cases in a typical household, of any given size, in the event that the epidemic becomes established. The aim of the paper is to investigate whether it is possible to determine which of the two underlying explanations is causing the varying response when given final size household outbreak data containing mild and severe cases. We conduct numerical studies which show that, given data on sufficiently many households, it is generally possible to discriminate between the two models by comparing the Kullback-Leibler divergence for the two fitted models to these data.
Resumo:
Background In occupational life, a mismatch between high expenditure of effort and receiving few rewards may promote the co-occurrence of lifestyle risk factors, however, there is insufficient evidence to support or refute this hypothesis. The aim of this study is to examine the extent to which the dimensions of the Effort-Reward Imbalance (ERI) model – effort, rewards and ERI – are associated with the co-occurrence of lifestyle risk factors. Methods Based on data from the Finnish Public Sector Study, cross-sectional analyses were performed for 28,894 women and 7233 men. ERI was conceptualized as a ratio of effort and rewards. To control for individual differences in response styles, such as a personal disposition to answer negatively to questionnaires, occupational and organizational -level ecological ERI scores were constructed in addition to individual-level ERI scores. Risk factors included current smoking, heavy drinking, body mass index ≥25 kg/m2, and physical inactivity. Multinomial logistic regression models were used to estimate the likelihood of having one risk factor, two risk factors, and three or four risk factors. The associations between ERI and single risk factors were explored using binary logistic regression models. Results After adjustment for age, socioeconomic position, marital status, and type of job contract, women and men with high ecological ERI were 40% more likely to have simultaneously ≥3 lifestyle risk factors (vs. 0 risk factors) compared with their counterparts with low ERI. When examined separately, both low ecological effort and low ecological rewards were also associated with an elevated prevalence of risk factor co-occurrence. The results obtained with the individual-level scores were in the same direction. The associations of ecological ERI with single risk factors were generally less marked than the associations with the co-occurrence of risk factors. Conclusion This study suggests that a high ratio of occupational efforts relative to rewards may be associated with an elevated risk of having multiple lifestyle risk factors. However, an unexpected association between low effort and a higher likelihood of risk factor co-occurrence as well as the absence of data on overcommitment (and thereby a lack of full test of the ERI model) warrant caution in regard to the extent to which the entire ERI model is supported by our evidence.
Resumo:
The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the firing response of several different cell types. Under constant current injection the periodic response and phase response curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a piece-wise linear caricature of the Morris-Lecar model, with oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.
Resumo:
This study investigated cow characteristics, farm facilities, and herd management strategies during the dry period to examine their joint influence on somatic cell counts (SCC) in early lactation. Data from 52 commercial dairy farms throughout England and Wales were collected over a 2-yr period. For the purpose of analysis, cows were separated into those housed for the dry period (6,419 cow-dry periods) and those at pasture (7,425 cow-dry periods). Bayesian multilevel models were specified with 2 response variables: ln SCC (continuous) and SCC >199,000 cells/mL (binary), both within 30 d of calving. Cow factors associated with an increased SCC after calving were parity, an SCC >199,000 cells/mL in the 60 d before drying off, increasing milk yield 0 to 30 d before drying off, and reduced DIM after calving at the time of SCC estimation. Herd management factors associated with an increased SCC after calving included procedures at drying off, aspects of bedding management, stocking density, and method of pasture grazing. Posterior predictions were used for model assessment, and these indicated that model fit was generally good. The research demonstrated that specific dry-period management strategies have an important influence on SCC in early lactation.