6 resultados para BASIS FUNCTION NETWORK
em Nottingham eTheses
Resumo:
In this Letter we introduce a continuum model of neural tissue that include the effects of so-called spike frequency adaptation (SFA). The basic model is an integral equation for synaptic activity that depends upon the non-local network connectivity, synaptic response, and firing rate of a single neuron. A phenomenological model of SFA is examined whereby the firing rate is taken to be a simple state-dependent threshold function. As in the case without SFA classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps). Importantly an analysis of bump stability using recent Evans function techniques shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. Direct numerical simulations both confirm our theoretical predictions and illustrate the rich dynamic behavior of this model, including the appearance of self-replicating bumps.
Resumo:
In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using: moving least-squares approximation (MLS); radial basis functions (RBF). Using MLS approximation is appealing because polynomial consistency of the particle approximation can be enforced. RBFs further appeal as they allow one to dispense with the smoothing-length - the parameter in the SPH method which governs the number of particles within the support of the shape function. Currently, only ad hoc methods for choosing the smoothing-length exist. We ensure that any enhancement retains the conservative and meshfree nature of SPH. In doing so, we derive a new set of variationally-consistent hydrodynamic equations. Finally, we demonstrate the performance of the new equations on the Sod shock tube problem.
Resumo:
We study spatially localized states of a spiking neuronal network populated by a pulse coupled phase oscillator known as the lighthouse model. We show that in the limit of slow synaptic interactions in the continuum limit the dynamics reduce to those of the standard Amari model. For non-slow synaptic connections we are able to go beyond the standard firing rate analysis of localized solutions allowing us to explicitly construct a family of co-existing one-bump solutions, and then track bump width and firing pattern as a function of system parameters. We also present an analysis of the model on a discrete lattice. We show that multiple width bump states can co-exist and uncover a mechanism for bump wandering linked to the speed of synaptic processing. Moreover, beyond a wandering transition point we show that the bump undergoes an effective random walk with a diffusion coefficient that scales exponentially with the rate of synaptic processing and linearly with the lattice spacing.
Resumo:
Artificial immune systems have previously been applied to the problem of intrusion detection. The aim of this research is to develop an intrusion detection system based on the function of Dendritic Cells (DCs). DCs are antigen presenting cells and key to the activation of the human immune system, behaviour which has been abstracted to form the Dendritic Cell Algorithm (DCA). In algorithmic terms, individual DCs perform multi-sensor data fusion, asynchronously correlating the fused data signals with a secondary data stream. Aggregate output of a population of cells is analysed and forms the basis of an anomaly detection system. In this paper the DCA is applied to the detection of outgoing port scans using TCP SYN packets. Results show that detection can be achieved with the DCA, yet some false positives can be encountered when simultaneously scanning and using other network services. Suggestions are made for using adaptive signals to alleviate this uncovered problem.
Resumo:
The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the firing response of several different cell types. Under constant current injection the periodic response and phase response curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a piece-wise linear caricature of the Morris-Lecar model, with oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.
Resumo:
Many geological formations consist of crystalline rocks that have very low matrix permeability but allow flow through an interconnected network of fractures. Understanding the flow of groundwater through such rocks is important in considering disposal of radioactive waste in underground repositories. A specific area of interest is the conditioning of fracture transmissivities on measured values of pressure in these formations. This is the process where the values of fracture transmissivities in a model are adjusted to obtain a good fit of the calculated pressures to measured pressure values. While there are existing methods to condition transmissivity fields on transmissivity, pressure and flow measurements for a continuous porous medium there is little literature on conditioning fracture networks. Conditioning fracture transmissivities on pressure or flow values is a complex problem because the measurements are not linearly related to the fracture transmissivities and they are also dependent on all the fracture transmissivities in the network. We present a new method for conditioning fracture transmissivities on measured pressure values based on the calculation of certain basis vectors; each basis vector represents the change to the log transmissivity of the fractures in the network that results in a unit increase in the pressure at one measurement point whilst keeping the pressure at the remaining measurement points constant. The fracture transmissivities are updated by adding a linear combination of basis vectors and coefficients, where the coefficients are obtained by minimizing an error function. A mathematical summary of the method is given. This algorithm is implemented in the existing finite element code ConnectFlow developed and marketed by Serco Technical Services, which models groundwater flow in a fracture network. Results of the conditioning are shown for a number of simple test problems as well as for a realistic large scale test case.