3 resultados para Atomic and Molecular Physics, and Optics
em Nottingham eTheses
Resumo:
We review our work on generalisations of the Becker-Doring model of cluster-formation as applied to nucleation theory, polymer growth kinetics, and the formation of upramolecular structures in colloidal chemistry. One valuable tool in analysing mathematical models of these systems has been the coarse-graining approximation which enables macroscopic models for observable quantities to be derived from microscopic ones. This permits assumptions about the detailed molecular mechanisms to be tested, and their influence on the large-scale kinetics of surfactant self-assembly to be elucidated. We also summarise our more recent results on Becker-Doring systems, notably demonstrating that cross-inhibition and autocatalysis can destabilise a uniform solution and lead to a competitive environment in which some species flourish at the expense of others, phenomena relevant in models of the origins of life.
Resumo:
The equivalent orbital (EO) method is investigated and used for predicting outer and inner ionization potentials of the linear alkanes. The calculated ionization potentials are in good agreement with those observed in photoelectron spectra provided that a set of 12 parameters is used in the theory. An optimization technique is used to find the best values for thle parameters and a single transferable parameter set can be found which is applicable to all the n-alkanes. A good fit to the experimental results can only be obtained if the uppermost molecular orbital of the n-alkanes is an antisymmetrical orbital built up from CH equivalent orbitals.
Resumo:
A two stage approach to performing ab initio calculations on medium and large sized molecules is described. The first step is to perform SCF calculations on small molecules or molecular fragments using the OPIT Program. This employs a small basis set of spherical and p-type Gaussian functions. The Gaussian functions can be identified very closely with atomic cores, bond pairs, lone pairs, etc. The position and exponent of any of the Gaussian functions can be varied by OPIT to produce a small but fully optimised basis set. The second stage is the molecular fragments method. As an example of this, Gaussian exponents and distances are taken from an OPIT calculation on ethylene and used unchanged in a single SCF calculation on benzene. Approximate ab initio calculations of this type give much useful information and are often preferable to semi-empirical approaches, since the nature of the approximations involved is much better defined.