3 resultados para Artificial intelligence -- Computer programs

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reasoning systems have reached a high degree of maturity in the last decade. However, even the most successful systems are usually not general purpose problem solvers but are typically specialised on problems in a certain domain. The MathWeb SOftware Bus (Mathweb-SB) is a system for combining reasoning specialists via a common osftware bus. We described the integration of the lambda-clam systems, a reasoning specialist for proofs by induction, into the MathWeb-SB. Due to this integration, lambda-clam now offers its theorem proving expertise to other systems in the MathWeb-SB. On the other hand, lambda-clam can use the services of any reasoning specialist already integrated. We focus on the latter and describe first experimnents on proving theorems by induction using the computational power of the MAPLE system within lambda-clam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coinduction is a proof rule. It is the dual of induction. It allows reasoning about non--well--founded structures such as lazy lists or streams and is of particular use for reasoning about equivalences. A central difficulty in the automation of coinductive proof is the choice of a relation (called a bisimulation). We present an automation of coinductive theorem proving. This automation is based on the idea of proof planning. Proof planning constructs the higher level steps in a proof, using knowledge of the general structure of a family of proofs and exploiting this knowledge to control the proof search. Part of proof planning involves the use of failure information to modify the plan by the use of a proof critic which exploits the information gained from the failed proof attempt. Our approach to the problem was to develop a strategy that makes an initial simple guess at a bisimulation and then uses generalisation techniques, motivated by a critic, to refine this guess, so that a larger class of coinductive problems can be automatically verified. The implementation of this strategy has focused on the use of coinduction to prove the equivalence of programs in a small lazy functional language which is similar to Haskell. We have developed a proof plan for coinduction and a critic associated with this proof plan. These have been implemented in CoClam, an extended version of Clam with encouraging results. The planner has been successfully tested on a number of theorems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.