2 resultados para Arrowhead, interoperability, soa, internet of things, smart spaces, api, simulation

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on continuing research into the modelling of an order picking process within a Crossdocking distribution centre using Simulation Optimisation. The aim of this project is to optimise a discrete event simulation model and to understand factors that affect finding its optimal performance. Our initial investigation revealed that the precision of the selected simulation output performance measure and the number of replications required for the evaluation of the optimisation objective function through simulation influences the ability of the optimisation technique. We experimented with Common Random Numbers, in order to improve the precision of our simulation output performance measure, and intended to use the number of replications utilised for this purpose as the initial number of replications for the optimisation of our Crossdocking distribution centre simulation model. Our results demonstrate that we can improve the precision of our selected simulation output performance measure value using Common Random Numbers at various levels of replications. Furthermore, after optimising our Crossdocking distribution centre simulation model, we are able to achieve optimal performance using fewer simulations runs for the simulation model which uses Common Random Numbers as compared to the simulation model which does not use Common Random Numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the use of non-symbolic fragmentation of data for securing communications. Non-symbolic fragmentation, or NSF, relies on breaking up data into non-symbolic fragments, which are (usually irregularly-sized) chunks whose boundaries do not necessarily coincide with the boundaries of the symbols making up the data. For example, ASCII data is broken up into fragments which may include 8-bit fragments but also include many other sized fragments. Fragments are then separated with a form of path diversity. The secrecy of the transmission relies on the secrecy of one or more of a number of things: the ordering of the fragments, the sizes of the fragments, and the use of path diversity. Once NSF is in place, it can help secure many forms of communication, and is useful for exchanging sensitive information, and for commercial transactions. A sample implementation is described with an evaluation of the technology.