2 resultados para Arithmetic circuit
em Nottingham eTheses
Resumo:
Languages based upon binary relations offer an appealing setting for constructing programs from specifications. For example, working with relations rather than functions allows specifications to be more abstract (for example, many programs have a natural specification using the converse operator on relations), and affords a natural treatment of non-determinism in specifications. In this paper we present a novel pictorial interpretation of relational terms as simple pictures of circuits, and a soundness/completeness result that allows relational equations to be proved by pictorial reasoning.
Resumo:
This paper reports a case study in the use of proof planning in the context of higher order syntax. Rippling is a heuristic for guiding rewriting steps in induction that has been used successfully in proof planning inductive proofs using first order representations. Ordinal arithmetic provides a natural set of higher order examples on which transfinite induction may be attempted using rippling. Previously Boyer-Moore style automation could not be applied to such domains. We demonstrate that a higher-order extension of the rippling heuristic is sufficient to plan such proofs automatically. Accordingly, ordinal arithmetic has been implemented in lambda-clam, a higher order proof planning system for induction, and standard undergraduate text book problems have been successfully planned. We show the synthesis of a fixpoint for normal ordinal functions which demonstrates how our automation could be extended to produce more interesting results than the textbook examples tried so far.