4 resultados para Anisotropic Hardening

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the a priori error analysis of hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form under weak assumptions on the mesh design and the local finite element spaces employed. In particular, we prove a priori hp-error bounds for linear target functionals of the solution, on (possibly) anisotropic computational meshes with anisotropic tensor-product polynomial basis functions. The theoretical results are illustrated by a numerical experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the a posteriori error analysis and hp-adaptation strategies for hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes with anisotropically enriched elemental polynomial degrees. In particular, we exploit duality based hp-error estimates for linear target functionals of the solution and design and implement the corresponding adaptive algorithms to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement and isotropic and anisotropic polynomial degree enrichment. The superiority of the proposed algorithm in comparison with standard hp-isotropic mesh refinement algorithms and an h-anisotropic/p-isotropic adaptive procedure is illustrated by a series of numerical experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the crystal structure of a substrate can be exploited to drive the anisotropic assembly of colloidal nanoparticles. Pentanethiol-passivated Au particles of approximately 2 nm diameter deposited from toluene onto hydrogen-passivated Si(111) surfaces form linear assemblies (rods) with a narrow width distribution. The rod orientations mirror the substrate symmetry, with a high degree of alignment along principal crystallographic axes of the Si(111) surface. There is a strong preference for anisotropic growth with rod widths substantially more tightly distributed than lengths. Entropic trapping of nanoparticles provides a plausible explanation for the formation of the anisotropic assemblies we observe.