2 resultados para Adjoint boundary conditions

em Nottingham eTheses


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article we propose a new symmetric version of the interior penalty discontinuous Galerkin finite element method for the numerical approximation of the compressible Navier-Stokes equations. Here, particular emphasis is devoted to the construction of an optimal numerical method for the evaluation of certain target functionals of practical interest, such as the lift and drag coefficients of a body immersed in a viscous fluid. With this in mind, the key ingredients in the construction of the method include: (i) An adjoint consistent imposition of the boundary conditions; (ii) An adjoint consistent reformulation of the underlying target functional of practical interest; (iii) Design of appropriate interior-penalty stabilization terms. Numerical experiments presented within this article clearly indicate the optimality of the proposed method when the error is measured in terms of both the L_2-norm, as well as for certain target functionals. Computational comparisons with other discontinuous Galerkin schemes proposed in the literature, including the second scheme of Bassi & Rebay, cf. [11], the standard SIPG method outlined in [25], and an NIPG variant of the new scheme will be undertaken.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We shall consider the weak formulation of a linear elliptic model problem with discontinuous Dirichlet boundary conditions. Since such problems are typically not well-defined in the standard H^1-H^1 setting, we will introduce a suitable saddle point formulation in terms of weighted Sobolev spaces. Furthermore, we will discuss the numerical solution of such problems. Specifically, we employ an hp-discontinuous Galerkin method and derive an L^2-norm a posteriori error estimate. Numerical experiments demonstrate the effectiveness of the proposed error indicator in both the h- and hp-version setting. Indeed, in the latter case exponential convergence of the error is attained as the mesh is adaptively refined.