2 resultados para ASPECT-RATIO
em Nottingham eTheses
Resumo:
In many mathematical models for pattern formation, a regular hexagonal pattern is stable in an infinite region. However, laboratory and numerical experiments are carried out in finite domains, and this imposes certain constraints on the possible patterns. In finite rectangular domains, it is shown that a regular hexagonal pattern cannot occur if the aspect ratio is rational. In practice, it is found experimentally that in a rectangular region, patterns of irregular hexagons are often observed. This work analyses the geometry and dynamics of irregular hexagonal patterns. These patterns occur in two different symmetry types, either with a reflection symmetry, involving two wavenumbers, or without symmetry, involving three different wavenumbers. The relevant amplitude equations are studied to investigate the detailed bifurcation structure in each case. It is shown that hexagonal patterns can bifurcate subcritically either from the trivial solution or from a pattern of rolls. Numerical simulations of a model partial differential equation are also presented to illustrate the behaviour.
Resumo:
We investigate the structure of strongly nonlinear Rayleigh–Bénard convection cells in the asymptotic limit of large Rayleigh number and fixed, moderate Prandtl number. Unlike the flows analyzed in prior theoretical studies of infinite Prandtl number convection, our cellular solutions exhibit dynamically inviscid constant-vorticity cores. By solving an integral equation for the cell-edge temperature distribution, we are able to predict, as a function of cell aspect ratio, the value of the core vorticity, details of the flow within the thin boundary layers and rising/falling plumes adjacent to the edges of the convection cell, and, in particular, the bulk heat flux through the layer. The results of our asymptotic analysis are corroborated using full pseudospectral numerical simulations and confirm that the heat flux is maximized for convection cells that are roughly square in cross section.