3 resultados para [JEL:D01] Microeconomics - General - Microeconomic Behavior: Underlying Principles

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The purpose of this research is to show how the self-archiving of journal papers is a major step towards providing open access to research. However, copyright transfer agreements (CTAs) that are signed by an author prior to publication often indicate whether, and in what form, self-archiving is allowed. The SHERPA/RoMEO database enables easy access to publishers' policies in this area and uses a colour-coding scheme to classify publishers according to their self-archiving status. The database is currently being redeveloped and renamed the Copyright Knowledge Bank. However, it will still assign a colour to individual publishers indicating whether pre-prints can be self-archived (yellow), post-prints can be self-archived (blue), both pre-print and post-print can be archived (green) or neither (white). The nature of CTAs means that these decisions are rarely as straightforward as they may seem, and this paper describes the thinking and considerations that were used in assigning these colours in the light of the underlying principles and definitions of open access. Approach – Detailed analysis of a large number of CTAs led to the development of controlled vocabulary of terms which was carefully analysed to determine how these terms equate to the definition and “spirit” of open access. Findings – The paper reports on how conditions outlined by publishers in their CTAs, such as how or where a paper can be self-archived, affect the assignment of a self-archiving colour to the publisher. Value – The colour assignment is widely used by authors and repository administrators in determining whether academic papers can be self-archived. This paper provides a starting-point for further discussion and development of publisher classification in the open access environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.