49 resultados para Immune System Diseases


Relevância:

90.00% 90.00%

Publicador:

Resumo:

As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Jerne's idiotypic network theory postulates that the immune response involves inter-antibody stimulation and suppression as well as matching to antigens. The theory has proved the most popular Artificial Immune System (AIS) model for incorporation into behavior-based robotics but guidelines for implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique have not been demonstrated in the form of a comparison with non-idiotypic systems. This paper aims to address these issues. A method for integrating an idiotypic AIS network with a Reinforcement Learning based control system (RL) is described and the mechanisms underlying antibody stimulation and suppression are explained in detail. Some hypotheses that account for the network advantage are put forward and tested using three systems with increasing idiotypic complexity. The basic RL, a simplified hybrid AIS-RL that implements idiotypic selection independently of derived concentration levels and a full hybrid AIS-RL scheme are examined. The test bed takes the form of a simulated Pioneer robot that is required to navigate through maze worlds detecting and tracking door markers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial immune systems (AISs) to date have generally been inspired by naive biological metaphors. This has limited the effectiveness of these systems. In this position paper two ways in which AISs could be made more biologically realistic are discussed. We propose that AISs should draw their inspiration from organisms which possess only innate immune systems, and that AISs should employ systemic models of the immune system to structure their overall design. An outline of plant and invertebrate immune systems is presented, and a number of contemporary systemic models are reviewed. The implications for interdisciplinary research that more biologically-realistic AISs could have is also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound imnological concepts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The immune system provides a rich metaphor for computer security: anomaly detection that works in nature should work for machines. However, early artificial immune system approaches for computer security had only limited success. Arguably, this was due to these artificial systems being based on too simplistic a view of the immune system. We present here a second generation artificial immune system for process anomaly detection. It improves on earlier systems by having different artificial cell types that process information. Following detailed information about how to build such second generation systems, we find that communication between cells types is key to performance. Through realistic testing and validation we show that second generation artificial immune systems are capable of anomaly detection beyond generic system policies. The paper concludes with a discussion and outline of the next steps in this exciting area of computer security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We outline initial concepts for an immune inspired algorithm to evaluate and predict oil price time series data. The proposed solution evolves a short term pool of trackers dynamically, with each member attempting to map trends and anticipate future price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. The resulting sequence of trackers, ordered in time, can be used as a forecasting tool. Examination of the pool of evolving trackers also provides valuable insight into the properties of the crude oil market.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT Artificial immune system can be used to generate schedules in changing environments and it has been proven to be more robust than schedules developed using a genetic algorithm. Good schedules can be produced especially when the number of the antigens is increased. However, an increase in the range of the antigens had somehow affected the fitness of the immune system. In this research, we are trying to improve the result of the system by rescheduling the same problem using the same method while at the same time maintaining the robustness of the schedules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has previously been shown that a recommender based on immune system idiotypic principles can outperform one based on correlation alone. This paper reports the results of work in progress, where we undertake some investigations into the nature of this beneficial effect. The initial findings are that the immune system recommender tends to produce different neighbourhoods, and that the superior performance of this recommender is due partly to the different neighbourhoods, and partly to the way that the idiotypic effect is used to weight each neighbour's recommendations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract. Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound immunological concepts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems. Notes: Uwe Aickelin, Department of Computing, University of Bradford, Bradford, BD7 1DP

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has previously been shown that a recommender based on immune system idiotypic principles can outperform one based on correlation alone. This paper reports the results of work in progress, where we undertake some investigations into the nature of this beneficial effect. The initial findings are that the immune system recommender tends to produce different neighbourhoods, and that the superior performance of this recommender is due partly to the different neighbourhoods, and partly to the way that the idiotypic effect is used to weight each neighbour’s recommendations.