534 resultados para Nottingham
Resumo:
We extend the construction and analysis of the non-overlapping Schwarz preconditioners proposed in Antonietti et al. [Math. Model. Numer. Anal., 41(1):21-54, 2007] and [Math. Model. Numer. Anal., submitted, 2006] to the (non-consistent) super penalty discontinuos Galerkin methods introduced by Babuska et al. [SIAM J. Numer. Anal., 10:863-875, 1973] and by Brezzi et al. [Numer. Methods Partial Differential Equations, 16(4):365-378, 2000]. We show that the resulting preconditioners are scalable, and we provide the convergence estimates. We also present numerical experiments demonstrating the theoretical results.
Resumo:
Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.
Resumo:
Intrusion Detection Systems (IDSs) provide an important layer of security for computer systems and networks, and are becoming more and more necessary as reliance on Internet services increases and systems with sensitive data are more commonly open to Internet access. An IDS’s responsibility is to detect suspicious or unacceptable system and network activity and to alert a systems administrator to this activity. The majority of IDSs use a set of signatures that define what suspicious traffic is, and Snort is one popular and actively developing open-source IDS that uses such a set of signatures known as Snort rules. Our aim is to identify a way in which Snort could be developed further by generalising rules to identify novel attacks. In particular, we attempted to relax and vary the conditions and parameters of current Snort rules, using a similar approach to classic rule learning operators such as generalisation and specialisation. We demonstrate the effectiveness of our approach through experiments with standard datasets and show that we are able to detect previously undetected variants of various attacks. We conclude by discussing the general effectiveness and appropriateness of generalisation in Snort based IDS rule processing. Keywords: anomaly detection, intrusion detection, Snort, Snort rules
Resumo:
Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is successful at detecting port scans.
Resumo:
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.
Resumo:
Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solutions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios.
Resumo:
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs which repeat within time series data. The power of the algorithm is derived from its use of a small number of parameters with minimal assumptions. The algorithm searches from a completely neutral perspective that is independent of the data being analysed and the underlying motifs. In this paper the motif tracking algorithm is applied to the search for patterns within sequences of low level system calls between the Linux kernel and the operating system’s user space. The MTA is able to compress data found in large system call data sets to a limited number of motifs which summarise that data. The motifs provide a resource from which a profile of executed processes can be built. The potential for these profiles and new implications for security research are highlighted. A higher level system call language for measuring similarity between patterns of such calls is also suggested.
Resumo:
The dendritic cell algorithm is an immune-inspired technique for processing time-dependant data. Here we propose it as a possible solution for a robotic classification problem. The dendritic cell algorithm is implemented on a real robot and an investigation is performed into the effects of varying the migration threshold median for the cell population. The algorithm performs well on a classification task with very little tuning. Ways of extending the implementation to allow it to be used as a classifier within the field of robotic security are suggested.
Resumo:
Artificial immune systems (AISs) to date have generally been inspired by naive biological metaphors. This has limited the effectiveness of these systems. In this position paper two ways in which AISs could be made more biologically realistic are discussed. We propose that AISs should draw their inspiration from organisms which possess only innate immune systems, and that AISs should employ systemic models of the immune system to structure their overall design. An outline of plant and invertebrate immune systems is presented, and a number of contemporary systemic models are reviewed. The implications for interdisciplinary research that more biologically-realistic AISs could have is also discussed.
Resumo:
The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify variable length unknown motifs which repeat within time series data. The algorithm searches from a completely neutral perspective that is independent of the data being analysed and the underlying motifs. In this paper we test the flexibility of the motif tracking algorithm by applying it to the search for patterns in two industrial data sets. The algorithm is able to identify a population of motifs successfully in both cases, and the value of these motifs is discussed.
Resumo:
This paper presents a technique called Improved Squeaky Wheel Optimisation (ISWO) for driver scheduling problems. It improves the original Squeaky Wheel Optimisation’s (SWO) effectiveness and execution speed by incorporating two additional steps of Selection and Mutation which implement evolution within a single solution. In the ISWO, a cycle of Analysis-Selection-Mutation-Prioritization-Construction continues until stopping conditions are reached. The Analysis step first computes the fitness of a current solution to identify troublesome components. The Selection step then discards these troublesome components probabilistically by using the fitness measure, and the Mutation step follows to further discard a small number of components at random. After the above steps, an input solution becomes partial and thus the resulting partial solution needs to be repaired. The repair is carried out by using the Prioritization step to first produce priorities that determine an order by which the following Construction step then schedules the remaining components. Therefore, the optimisation in the ISWO is achieved by solution disruption, iterative improvement and an iterative constructive repair process performed. Encouraging experimental results are reported.
Resumo:
The Dendritic Cell algorithm (DCA) is inspired by recent work in innate immunity. In this paper a formal description of the DCA is given. The DCA is described in detail, and its use as an anomaly detector is illustrated within the context of computer security. A port scan detection task is performed to substantiate the influence of signal selection on the behaviour of the algorithm. Experimental results provide a comparison of differing input signal mappings.
Resumo:
Network Intrusion Detection Systems (NIDS) monitor a net- work with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS’s rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
Purpose – The purpose of this research is to show how the self-archiving of journal papers is a major step towards providing open access to research. However, copyright transfer agreements (CTAs) that are signed by an author prior to publication often indicate whether, and in what form, self-archiving is allowed. The SHERPA/RoMEO database enables easy access to publishers' policies in this area and uses a colour-coding scheme to classify publishers according to their self-archiving status. The database is currently being redeveloped and renamed the Copyright Knowledge Bank. However, it will still assign a colour to individual publishers indicating whether pre-prints can be self-archived (yellow), post-prints can be self-archived (blue), both pre-print and post-print can be archived (green) or neither (white). The nature of CTAs means that these decisions are rarely as straightforward as they may seem, and this paper describes the thinking and considerations that were used in assigning these colours in the light of the underlying principles and definitions of open access. Approach – Detailed analysis of a large number of CTAs led to the development of controlled vocabulary of terms which was carefully analysed to determine how these terms equate to the definition and “spirit” of open access. Findings – The paper reports on how conditions outlined by publishers in their CTAs, such as how or where a paper can be self-archived, affect the assignment of a self-archiving colour to the publisher. Value – The colour assignment is widely used by authors and repository administrators in determining whether academic papers can be self-archived. This paper provides a starting-point for further discussion and development of publisher classification in the open access environment.
Resumo:
In this paper we outline initial concepts for an immune inspired algorithm to evaluate price time series data. The proposed solution evolves a short term pool of trackers dynamically through a process of proliferation and mutation, with each member attempting to map to trends in price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. Tests are performed to examine the algorithm’s ability to successfully identify trends in a small data set. The influence of the long term memory pool is then examined. We find the algorithm is able to identify price trends presented successfully and efficiently.