16 resultados para Application specific algorithm
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (47)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (14)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (27)
- Archive of European Integration (12)
- Aston University Research Archive (6)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (22)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (126)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (69)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (6)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (16)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (33)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (4)
- CUNY Academic Works (9)
- Dalarna University College Electronic Archive (12)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (21)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (5)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (9)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- DRUM (Digital Repository at the University of Maryland) (1)
- Instituto Politécnico do Porto, Portugal (20)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (7)
- Nottingham eTheses (16)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (17)
- School of Medicine, Washington University, United States (20)
- Scielo Saúde Pública - SP (20)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (16)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (9)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universitat de Girona, Spain (14)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (12)
- Université de Lausanne, Switzerland (67)
- Université de Montréal (1)
- Université de Montréal, Canada (41)
- University of Michigan (7)
- University of Queensland eSpace - Australia (30)
- University of Southampton, United Kingdom (4)
Resumo:
As one of the newest members in the field of articial immune systems (AIS), the Dendritic Cell Algorithm (DCA) is based on behavioural models of natural dendritic cells (DCs). Unlike other AIS, the DCA does not rely on training data, instead domain or expert knowledge is required to predetermine the mapping between input signals from a particular instance to the three categories used by the DCA. This data preprocessing phase has received the criticism of having manually over-fitted the data to the algorithm, which is undesirable. Therefore, in this paper we have attempted to ascertain if it is possible to use principal component analysis (PCA) techniques to automatically categorise input data while still generating useful and accurate classication results. The integrated system is tested with a biometrics dataset for the stress recognition of automobile drivers. The experimental results have shown the application of PCA to the DCA for the purpose of automated data preprocessing is successful.