2 resultados para streams
em Memorial University Research Repository
Resumo:
In this thesis, we introduce DeReEs-4v, an algorithm for unsupervised and automatic registration of two video frames captured depth-sensing cameras. DeReEs-4V receives two RGBD video streams from two depth-sensing cameras arbitrary located in an indoor space that share a minimum amount of 25% overlap between their captured scenes. The motivation of this research is to employ multiple depth-sensing cameras to enlarge the field of view and acquire a more complete and accurate 3D information of the environment. A typical way to combine multiple views from different cameras is through manual calibration. However, this process is time-consuming and may require some technical knowledge. Moreover, calibration has to be repeated when the location or position of the cameras change. In this research, we demonstrate how DeReEs-4V registration can be used to find the transformation of the view of one camera with respect to the other at interactive rates. Our algorithm automatically finds the 3D transformation to match the views from two cameras, requires no human interference, and is robust to camera movements while capturing. To validate this approach, a thorough examination of the system performance under different scenarios is presented. The system presented here supports any application that might benefit from the wider field-of-view provided by the combined scene from both cameras, including applications in 3D telepresence, gaming, people tracking, videoconferencing and computer vision.
Resumo:
This thesis stems from the project with real-time environmental monitoring company EMSAT Corporation. They were looking for methods to automatically ag spikes and other anomalies in their environmental sensor data streams. The problem presents several challenges: near real-time anomaly detection, absence of labeled data and time-changing data streams. Here, we address this problem using both a statistical parametric approach as well as a non-parametric approach like Kernel Density Estimation (KDE). The main contribution of this thesis is extending the KDE to work more effectively for evolving data streams, particularly in presence of concept drift. To address that, we have developed a framework for integrating Adaptive Windowing (ADWIN) change detection algorithm with KDE. We have tested this approach on several real world data sets and received positive feedback from our industry collaborator. Some results appearing in this thesis have been presented at ECML PKDD 2015 Doctoral Consortium.