1 resultado para stable-like processes

em Memorial University Research Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cambrian Tally Pond volcanic belt in central Newfoundland contains numerous volcanogenic massive sulphide (VMS) deposits, prospects, and showings that are locally associated with metalliferous mudstones and/or graphitic shales. Deposits in the belt are bimodal felsic-type VMS that are both base metal- (e.g., Duck Pond, Boundary) and precious metal-enriched (e.g., Lemarchant). At the Lemarchant deposit metalliferous mudstones are genetically and spatially associated with mineralization, whereas the relationship of other mudstones and shales to massive sulphide mineralization is more intricate and remains not fully understood. Metalliferous mudstones represent a hiatus in the volcanic activity where the deposition of hydrothermal products dominated over the abiogenic background sedimentation and/or dilution by volcaniclastic-epiclastic material. Lithogeochemical signatures allow one to distinguish between predominantly hydrothermally or detritally (i.e., non-hydrothermal) derived material. Metalliferous mudstones with a significant hydrothermal component, like those at Lemarchant, have elevated Fe/Al and base-metal contents, compared to detrital shales, and shale-normalized negative Ce and positive Eu anomalies, indicative of deposition from high temperature (>250°C) hydrothermal fluids within an oxygenated water column. Mudstones and shales sampled from other locations in the Tally Pond volcanic belt have more variable signatures ranging from hydrothermal (signatures as above) to non-hydrothermal (no positive Eu-anomalies, flat REE patterns), with some that have mixed (hydrothermal and detrital) signatures. Both S and Pb isotopic compositions indicate that proximal sulphides hosted in mudstones immediately associated with massive sulphide mineralization within the Lemarchant deposit contain a higher proportion of sulphur derived from hydrothermal sources and processes, and have more juvenile lead contributions, when compared to sulphides distal (not associated with massive sulphides) from mineralization. Lead and Nd isotopic compositions of both whole rock and minerals in the Lemarchant mudstones indicate involvement of underlying crustal basement during massive sulphide formation and throughout the evolution of the Tally Pond belt. Metalliferous mudstones precipitated early in the massive sulphide depositional history, but also have undergone syn- and post-ore-forming processes and have a larger lateral extent than the mineralization. Using lithogeochemistry, whole rock and in situ stable and radiogenic isotopes it is possible to distinguish prospective vent proximal (immediately associated with massive sulphide mineralization) from less prospective distal (not associated with massive sulphides) depositional environments and to reconstruct the paleotectonic setting on a deposit- to regional-scale for the Lemarchant deposit and other mudstone-associated prospects in the Tally Pond volcanic belt.