2 resultados para size-related diet shift

em Memorial University Research Repository


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent invasion of the European green crab (Carcinus maenas) populations in Placentia Bay, Newfoundland and Labrador (NL) raises great concern about potential impacts on local fisheries and native biodiversity. Green crab are highly adaptable and in both native and invaded areas, green crab are well established predators that can outcompete other similarly sized decapods. The main objectives of this thesis were to: 1) identify the native species that green crab compete with for resources; 2) determine the depths and substrate types in which these interactions likely occur; 3) assess the indirect effects of green crab on native crustaceans and their changes in behavior; 4) assess the impacts of green crab on benthic community structure; 5) compare the NL population with other Atlantic Canadian populations in terms of competitive abilities; and 6) compare morphological features of the NL population with other Atlantic Canadian populations. I found that green crab overlap in space and diet with both rock crab (Cancer irroratus) and American lobster (Homarus americanus), potentially leading to a shift in habitat. Laboratory studies on naïve juvenile lobster also suggested shifts in behavior related to green crab, in that lobster decreased foraging activity and increased shelter use in the presence of green crab. Benthic community analyses showed fewer species in mud, sand, and eelgrass sites heavily populated by green crab compared to sites without green crab, although results depended on the taxa involved and I could not eliminate environmental differences through a short term caging study. Foraging ability of green crab varied in intraspecific competition experiments, with populations from NL and Prince Edward Island dominating longer-established populations from Nova Scotia and New Brunswick. Additional studies excluded claw size as a factor driving these results and behavioral differences likely reflected differences in invasion time and population genetics. Overall, green crab in Placentia Bay appear to be altering community structure of benthic invertebrates through predation and they also appear to indirectly impact native crustaceans through competition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Atlantic cod, Gadus morhua, differs from many teleosts in that its heart does not respond to adrenergic stimulation, and is more capable of maintaining function during acute temperature changes. To examine if differences in intracellular calcium mobilization are associated with these atypical responses, confocal microscopy was used to study the calcium handling of cardiac cells from Atlantic cod vs. steelhead trout at their acclimation temperature (10ºC), or subjected to acute temperature changes (to 4 and 16ºC), while being stimulated across a range of frequencies (10 – 110 min⁻¹). In addition, cells were tested with and without tonic (10 nM) levels of adrenaline at 10ºC, and pharmacological blockers were used to study the relative contributions of the L-type Ca²⁺ channel, sarcoplasmic reticulum and Na+/Ca²⁺ exchanger to the Ca²⁺ transient. Consistent with previous in vitro and in situ studies, there were few significant effects of adrenaline on the Ca²⁺ transient of cod cardiomyocytes, yet adrenaline had significant positive inotropic effects on trout cardiomyocytes. At 10ºC, peak Ca²⁺ (F/F₀) only differed between the two species at low stimulation frequencies (10, 30 min-1), with trout F/F₀ 25-35% higher. In contrast, the time to peak Ca²⁺ and the time to half relaxation were both shorter (by 10 – 35% across frequencies) in cod. Acute temperature changes caused a shift in the Ca²⁺ - frequency relationship in both species, with F/F₀ values higher for trout at low frequencies (< 70 min⁻¹) at 4ºC, whereas this parameter was greater at all frequencies except 10 min⁻¹ in cod at 16ºC. Unfortunately, these experiments did not highlight clear species differences in the relative contributions of the L-type Ca²⁺ channels, sarcoplasmic reticulum and Na+/Ca²⁺ exchange to the Ca²⁺ transient.