2 resultados para scenario-based assessment

em Memorial University Research Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of critical thinking and communication skills is an essential part of Baccalaureate and Practical Nursing education. Scenario-based simulation, a form of experiential learning, directly engages students in the learning process. This teaching learning method has been shown to increase students’ understanding of the influence of their personal beliefs and values when working with clients and to improve therapeutic communication and critical thinking skills. Students in both the BN (Collaborative) and PN Programs at the Centre for Nursing Studies demonstrate a strong theoretical understanding of the impact of income and social status on population health but often experience difficulty applying this knowledge to the clinical situations involving clients and families. The purpose of the project was to develop a scenario-based simulation activity to provide nursing students with first-hand experiences of the impact of income and social status on health service accessibility. A literature review and stakeholder consultations were conducted to inform the project. The findings of these initiatives and Kolb’s Experiential Learning Theory were used to guide all aspects of the project. This report is an account of how the income and social status simulation and its accompanying materials were developed. This project provided an excellent learning opportunity that demonstrated the use of advanced nursing competencies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigated the risk of accidental release of hydrocarbons during transportation and storage. Transportation of hydrocarbons from an offshore platform to processing units through subsea pipelines involves risk of release due to pipeline leakage resulting from corrosion, plastic deformation caused by seabed shakedown or damaged by contact with drifting iceberg. The environmental impacts of hydrocarbon dispersion can be severe. Overall safety and economic concerns of pipeline leakage at subsea environment are immense. A large leak can be detected by employing conventional technology such as, radar, intelligent pigging or chemical tracer but in a remote location like subsea or arctic, a small chronic leak may be undetected for a period of time. In case of storage, an accidental release of hydrocarbon from the storage tank could lead pool fire; further it could escalate to domino effects. This chain of accidents may lead to extremely severe consequences. Analyzing past accident scenarios it is observed that more than half of the industrial domino accidents involved fire as a primary event, and some other factors for instance, wind speed and direction, fuel type and engulfment of the compound. In this thesis, a computational fluid dynamics (CFD) approach is taken to model the subsea pipeline leak and the pool fire from a storage tank. A commercial software package ANSYS FLUENT Workbench 15 is used to model the subsea pipeline leakage. The CFD simulation results of four different types of fluids showed that the static pressure and pressure gradient along the axial length of the pipeline have a sharp signature variation near the leak orifice at steady state condition. Transient simulation is performed to obtain the acoustic signature of the pipe near leak orifice. The power spectral density (PSD) of acoustic signal is strong near the leak orifice and it dissipates as the distance and orientation from the leak orifice increase. The high-pressure fluid flow generates more noise than the low-pressure fluid flow. In order to model the pool fire from the storage tank, ANSYS CFX Workbench 14 is used. The CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries. The attempt to reduce and prevent risks is discussed based on the results obtained from the numerical simulations of the numerical models.