3 resultados para robust parameter estimation

em Memorial University Research Repository


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis reports on a novel method to build a 3-D model of the above-water portion of icebergs using surface imaging. The goal is to work towards the automation of iceberg surveys, allowing an Autonomous Surface Craft (ASC) to acquire shape and size information. After collecting data and images, the core software algorithm is made up of three parts: occluding contour finding, volume intersection, and parameter estimation. A software module is designed that could be used on the ASC to perform automatic and fast processing of above-water surface image data to determine iceberg shape and size measurement and determination. The resolution of the method is calculated using data from the iceberg database of the Program of Energy Research and Development (PERD). The method was investigated using data from field trials conducted through the summer of 2014 by surveying 8 icebergs during 3 expeditions. The results were analyzed to determine iceberg characteristics. Limitations of this method are addressed including its accuracy. Surface imaging system and LIDAR system are developed to profile the above-water iceberg in 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, research for tsunami remote sensing using the Global Navigation Satellite System-Reflectometry (GNSS-R) delay-Doppler maps (DDMs) is presented. Firstly, a process for simulating GNSS-R DDMs of a tsunami-dominated sea sur- face is described. In this method, the bistatic scattering Zavorotny-Voronovich (Z-V) model, the sea surface mean square slope model of Cox and Munk, and the tsunami- induced wind perturbation model are employed. The feasibility of the Cox and Munk model under a tsunami scenario is examined by comparing the Cox and Munk model- based scattering coefficient with the Jason-1 measurement. A good consistency be- tween these two results is obtained with a correlation coefficient of 0.93. After con- firming the applicability of the Cox and Munk model for a tsunami-dominated sea, this work provides the simulations of the scattering coefficient distribution and the corresponding DDMs of a fixed region of interest before and during the tsunami. Fur- thermore, by subtracting the simulation results that are free of tsunami from those with presence of tsunami, the tsunami-induced variations in scattering coefficients and DDMs can be clearly observed. Secondly, a scheme to detect tsunamis and estimate tsunami parameters from such tsunami-dominant sea surface DDMs is developed. As a first step, a procedure to de- termine tsunami-induced sea surface height anomalies (SSHAs) from DDMs is demon- strated and a tsunami detection precept is proposed. Subsequently, the tsunami parameters (wave amplitude, direction and speed of propagation, wavelength, and the tsunami source location) are estimated based upon the detected tsunami-induced SSHAs. In application, the sea surface scattering coefficients are unambiguously re- trieved by employing the spatial integration approach (SIA) and the dual-antenna technique. Next, the effective wind speed distribution can be restored from the scat- tering coefficients. Assuming all DDMs are of a tsunami-dominated sea surface, the tsunami-induced SSHAs can be derived with the knowledge of background wind speed distribution. In addition, the SSHA distribution resulting from the tsunami-free DDM (which is supposed to be zero) is considered as an error map introduced during the overall retrieving stage and is utilized to mitigate such errors from influencing sub- sequent SSHA results. In particular, a tsunami detection procedure is conducted to judge the SSHAs to be truly tsunami-induced or not through a fitting process, which makes it possible to decrease the false alarm. After this step, tsunami parameter estimation is proceeded based upon the fitted results in the former tsunami detec- tion procedure. Moreover, an additional method is proposed for estimating tsunami propagation velocity and is believed to be more desirable in real-world scenarios. The above-mentioned tsunami-dominated sea surface DDM simulation, tsunami detection precept and parameter estimation have been tested with simulated data based on the 2004 Sumatra-Andaman tsunami event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The L-moments based index-flood procedure had been successfully applied for Regional Flood Frequency Analysis (RFFA) for the Island of Newfoundland in 2002 using data up to 1998. This thesis, however, considered both Labrador and the Island of Newfoundland using the L-Moments index-flood method with flood data up to 2013. For Labrador, the homogeneity test showed that Labrador can be treated as a single homogeneous region and the generalized extreme value (GEV) was found to be more robust than any other frequency distributions. The drainage area (DA) is the only significant variable for estimating the index-flood at ungauged sites in Labrador. In previous studies, the Island of Newfoundland has been considered as four homogeneous regions (A,B,C and D) as well as two Water Survey of Canada's Y and Z sub-regions. Homogeneous regions based on Y and Z was found to provide more accurate quantile estimates than those based on four homogeneous regions. Goodness-of-fit test results showed that the generalized extreme value (GEV) distribution is most suitable for the sub-regions; however, the three-parameter lognormal (LN3) gave a better performance in terms of robustness. The best fitting regional frequency distribution from 2002 has now been updated with the latest flood data, but quantile estimates with the new data were not very different from the previous study. Overall, in terms of quantile estimation, in both Labrador and the Island of Newfoundland, the index-flood procedure based on L-moments is highly recommended as it provided consistent and more accurate result than other techniques such as the regression on quantile technique that is currently used by the government.