2 resultados para propagation and regeneration
em Memorial University Research Repository
Resumo:
Hemocytes of the insects Lambdina fiscellaria fiscellaria and Choristoneura fumiferana did not adhere to the protoplasts of ~he fungus EntomoEhthora egressa. Hemocyte reaction for both insect species to test-particles was not suppressed by the protoplasts. The spherule cells of _-L. fiscellaria fiscellaria adhered to the spherical hyphal bodies and hyphae of ~· ~gressa. The granular cells of -c. fumiferana adhered to the hyphae of ~· egress~. Protoplasts exposed to papain were attacked by the granular ·cells of -c. fumiferana. Spent growth medium of both protoplast isolates produced paralysis when injected into -c. fumiferana larvae. Evidence suggests that heat-stable proteins may be involved. Protoplast isolates showed differences in the growth rates and regeneration sequences using coagulated egg yolk medium, a highly modified version of Grace's insect tissue . culture medium (MGM) and modifications of MGM and in the presence of C0₂. The isolates also differed in the changes that they induced in MGM composition during protoplast growth and in the rates of glucose utilization and protein secretion. The serum of c. fumiferana larvae contained protein(s) which we believe adhere to the cell membranes of the protoplasts of E. egressa. Evidence is presented for hemocyteplasn~ interaction in the presence of protoplasts. Components in the larval serum were found to influence protoplast growth patterns. The possibility of antiprotoplast serum activity is presented. Melanin, toxic levels of ninhydrinpositive compounds and antiprotoplast proteins may have been involved in this activity. The granular cells of -L. fiscellaria fiscellaria and Q• fumiferana adhered to the hyphae of ,Rhizopus ~i$rican~. Spores of Absidia repens and the bacteria Escherichia coli and Bacillus cereus adhered to the granular cells of both species of· insects. The granular cells and plasmatocytes of -c. fumiferana were capable of phagocytosing -B. cereus. Adhesion of .A... . repens spores to c. fumiferana granular cells ~ . - was stimulated by N-acetylglucosamine and glucosamine, moderately reduced by D-fucose, D-arabinose, D-mannose, D-galatose and sucrose and mildly reduced by D-glucose, D-fructose and trehalose. There was no evidence of humoral opsonins in larval hemolymph favoring test-particle-hemocyte interaction. Granular cells of c. fumiferana exposed to papain had reduced affinities for A. repens spores.
Resumo:
The Solid Oxide Fuel Cell (SOFC) is a class of fuel cells that is capable of generating very high levels of power at high temperatures. SOFCs are used for stationary power generation and as Combined Heat and Power (CHP) systems. In spite of all the beneficial features of the SOFC, the propagation of ripple currents, due to nonlinear loads, is a challenging problem, as it interferes with the physical operation of the fuel cell. The purpose of this thesis is to identify the cause of ripples and attempt to eliminate or reduce the ripple propagation through the use of Active Power Filters (APF). To this end, a systematic approach to modeling the fuel cell to account for its nonlinear behavior in the presence of current ripples is presented. A model of a small fuel cell power system which consists of a fuel cell, a DC-DC converter, a single-phase inverter and a nonlinear load is developed in MATLAB/Simulink environment. The extent of ripple propagation, due to variations in load magnitude and frequency, are identified using frequency spectrum analysis. In order to reduce the effects of ripple propagation, an APF is modeled to remove ripples from the DC fuel cell current. The emphasis of this thesis is based on the idea that small fuel cell systems cannot implement large passive filters to cancel the effects of ripple propagation and hence, the compact APF topology effectively protects the fuel cell from propagating ripples and improves its electrical performance.