2 resultados para nonlinear heat transfer equations
em Memorial University Research Repository
Resumo:
In oil and gas pipeline operations, the gas, oil, and water phases simultaneously move through pipe systems. The mixture cools as it flows through subsea pipelines, and forms a hydrate formation region, where the hydrate crystals start to grow and may eventually block the pipeline. The potential of pipe blockage due to hydrate formation is one of the most significant flow-assurance problems in deep-water subsea operations. Due to the catastrophic safety and economic implications of hydrate blockage, it is important to accurately predict the simultaneous flow of gas, water, and hydrate particles in flowlines. Currently, there are few or no studies that account for the simultaneous effects of hydrate growth and heat transfer on flow characteristics within pipelines. This thesis presents new and more accurate predictive models of multiphase flows in undersea pipelines to describe the simultaneous flow of gas, water, and hydrate particles through a pipeline. A growth rate model for the hydrate phase is presented and then used in the development of a new three-phase model. The conservation equations of mass, momentum, and energy are formulated to describe the physical phenomena of momentum and heat transfer between the fluid and the wall. The governing equations are solved based on an analytical-numerical approach using a Newton-Raphson method for the nonlinear equations. An algorithm was developed in Matlab software to solve the equations from the inlet to the outlet of the pipeline. The developed models are validated against a single-phase model with mixture properties, and the results of comparative studies show close agreement. The new model predicts the volume fraction and velocity of each phase, as well as the mixture pressure and temperature profiles along the length of the pipeline. The results from the hydrate growth model reveal the growth rate and location where the initial hydrates start to form. Finally, to assess the impact of certain parameters on the flow characteristics, parametric studies have been conducted. The results show the effect of a variation in the pipe diameter, mass flow rate, inlet pressure, and inlet temperature on the flow characteristics and hydrate growth rates.
Resumo:
A heat loop suitable for the study of thermal fouling and its relationship to corrosion processes was designed, constructed and tested. The design adopted was an improvement over those used by such investigators as Hopkins and the Heat Transfer Research Institute in that very low levels of fouling could be detected accurately, the heat transfer surface could be readily removed for examination and the chemistry of the environment could be carefully monitored and controlled. In addition, an indirect method of electrical heating of the heat transfer surface was employed to eliminate magnetic and electric effects which result when direct resistance heating is employed to a test section. The testing of the loop was done using a 316 stainless steel test section and a suspension of ferric oxide and water in an attempt to duplicate the results obtained by Hopkins. Two types of thermal ·fouling resistance versus time curves were obtained . (i) Asymptotic type fouling curve, similar to the fouling behaviour described by Kern and Seaton and other investigators, was the most frequent type of fouling curve obtained. Thermal fouling occurred at a steadily decreasing rate before reaching a final asymptotic value. (ii) If an asymptotically fouled tube was cooled with rapid cir- ·culation for periods up to eight hours at zero heat flux, and heating restarted, fouling recommenced at a high linear rate. The fouling results obtained were observed to be similar and 1n agreement with the fouling behaviour reported previously by Hopkins and it was possible to duplicate quite closely the previous results . This supports the contention of Hopkins that the fouling results obtained were due to a crevice corrosion process and not an artifact of that heat loop which might have caused electrical and magnetic effects influencing the fouling. The effects of Reynolds number and heat flux on the asymptotic fouling resistance have been determined. A single experiment to study the effect of oxygen concentration has been carried out. The ferric oxide concentration for most of the fouling trials was standardized at 2400 ppM and the range of Reynolds number and heat flux for the study was 11000-29500 and 89-121 KW/M², respectively.