2 resultados para large transportation network

em Memorial University Research Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigated the risk of accidental release of hydrocarbons during transportation and storage. Transportation of hydrocarbons from an offshore platform to processing units through subsea pipelines involves risk of release due to pipeline leakage resulting from corrosion, plastic deformation caused by seabed shakedown or damaged by contact with drifting iceberg. The environmental impacts of hydrocarbon dispersion can be severe. Overall safety and economic concerns of pipeline leakage at subsea environment are immense. A large leak can be detected by employing conventional technology such as, radar, intelligent pigging or chemical tracer but in a remote location like subsea or arctic, a small chronic leak may be undetected for a period of time. In case of storage, an accidental release of hydrocarbon from the storage tank could lead pool fire; further it could escalate to domino effects. This chain of accidents may lead to extremely severe consequences. Analyzing past accident scenarios it is observed that more than half of the industrial domino accidents involved fire as a primary event, and some other factors for instance, wind speed and direction, fuel type and engulfment of the compound. In this thesis, a computational fluid dynamics (CFD) approach is taken to model the subsea pipeline leak and the pool fire from a storage tank. A commercial software package ANSYS FLUENT Workbench 15 is used to model the subsea pipeline leakage. The CFD simulation results of four different types of fluids showed that the static pressure and pressure gradient along the axial length of the pipeline have a sharp signature variation near the leak orifice at steady state condition. Transient simulation is performed to obtain the acoustic signature of the pipe near leak orifice. The power spectral density (PSD) of acoustic signal is strong near the leak orifice and it dissipates as the distance and orientation from the leak orifice increase. The high-pressure fluid flow generates more noise than the low-pressure fluid flow. In order to model the pool fire from the storage tank, ANSYS CFX Workbench 14 is used. The CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries. The attempt to reduce and prevent risks is discussed based on the results obtained from the numerical simulations of the numerical models.