3 resultados para harsh parenting
em Memorial University Research Repository
Resumo:
The behaviour and fate of spilled oil in harsh marine environments, such as the North Atlantic and the Arctic Ocean are complex due to environmental factors and the composition of the crude. In order to develop appropriate oil spill prevention and management methods, we must first understand how the oil behaves in these harsh environmental conditions. This study focuses on determining the fate of oil in harsh marine environments by first identifying target compounds in the oil that can be used to determine the fate of a spill. This thesis presents the partitioning behaviour of six polycyclic aromatic hydrocarbons (PAHs), which represent different groups, and phenols in cold conditions. The smallest PAH, naphthalene, dominated in terms of concentration in water accommodated fraction (WAF) of oil, while the larger ringed PAHs presented at lower concentrations. The smallest oil-water partition coefficient was recorded by phenol which partitioned into the seawater more quickly than PAHs. The partitioning of larger PAHs was slower and they indicated high partition coefficients. The oil partitioning increased slightly as temperature increased from 4ᴼC to 15ᴼC. The oil loading (0.1 g/L to 10 g/L) also contributed in deciding the concentrations in water. The use of chemical dispersants is a common response to spills. This study identified that chemical dispersants can change the fate of an oil spill by increasing the availability of oil in seawater. The concentration of larger PAHs such as pyrene and chrysene increased significantly with the application of dispersants. The information obtained are used in developing a molecular imprinted polymer (MIP) sensor to identify oil spills in the North Atlantic Ocean.
Resumo:
Submarine slope stability has become an important concern and a subject of research with increasing demand for offshore developments and technological advancement for harsh and challenging environments. The consequences of submarine slope failure adjacent to oil and gas facilities would have a large financial, safety and regulatory impact. This current research work investigates potential failure of submarine gassy slopes triggered by tidal variations. Due to tidal variations, failure of an unsaturated slope may occur under specific combinations of increasing degree of saturation and soil permeability, and decreasing tidal period. Novel physical model tests in a geotechnical centrifuge were undertaken to examine submarine slope failure mechanisms containing gassy sediments. The model preparation techniques, measurement systems and results are presented. The response observed in the model test is discussed and further developments proposed. The buried PPT’s response of the submarine slope are comparable in terms of attenuation and phase lag with Nagaswaran (1983) and with field measurements of Atigh and Byrne (2004) in terms of phase lag.
Resumo:
The exploration and development of oil and gas reserves located in harsh offshore environments are characterized with high risk. Some of these reserves would be uneconomical if produced using conventional drilling technology due to increased drilling problems and prolonged non-productive time. Seeking new ways to reduce drilling cost and minimize risks has led to the development of Managed Pressure Drilling techniques. Managed pressure drilling methods address the drawbacks of conventional overbalanced and underbalanced drilling techniques. As managed pressure drilling techniques are evolving, there are many unanswered questions related to safety and operating pressure regimes. Quantitative risk assessment techniques are often used to answer these questions. Quantitative risk assessment is conducted for the various stages of drilling operations – drilling ahead, tripping operation, casing and cementing. A diagnostic model for analyzing the rotating control device, the main component of managed pressure drilling techniques, is also studied. The logic concept of Noisy-OR is explored to capture the unique relationship between casing and cementing operations in leading to well integrity failure as well as its usage to model the critical components of constant bottom-hole pressure drilling technique of managed pressure drilling during tripping operation. Relevant safety functions and inherent safety principles are utilized to improve well integrity operations. Loss function modelling approach to enable dynamic consequence analysis is adopted to study blowout risk for real-time decision making. The aggregation of the blowout loss categories, comprising: production, asset, human health, environmental response and reputation losses leads to risk estimation using dynamically determined probability of occurrence. Lastly, various sub-models developed for the stages/sub-operations of drilling operations and the consequence modelling approach are integrated for a holistic risk analysis of drilling operations.