2 resultados para exponential instability of motion

em Memorial University Research Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major objectives of this thesis were to determine if foam rolling had any effect on antagonist muscle activation and whether those changes would alter muscular co-activation patterns. The results from this thesis along with current literature will help clinicians to develop adequate exercise prescription for rehabilitative and pre-activity purposes. The existing literature has shown that foam rolling or roller massagers can increase range of motion (ROM), improve performance, and alter pain perception, however little research exists regarding changes in muscle activation following foam rolling. This study developed a reliable method for measuring muscle activation around the knee joint and using that method found that foam rolling the quadriceps can impair hamstrings muscle activation likely due to greater levels of perceived pain when rolling the quadriceps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To predict the maneuvering performance of a propelled SPAR vessel, a mathematical model was established as a path simulator. A system-based mathematical model was chosen as it offers advantages in cost and time over full Computational Fluid Dynamics (CFD) simulations. The model is intended to provide a means of optimizing the maneuvering performance of this new vessel type. In this study the hydrodynamic forces and control forces are investigated as individual components, combined in a vectorial setting, and transferred to a body-fixed basis. SPAR vessels are known to be very sensitive to large amplitude motions during maneuvers due to the relatively small hydrostatic restoring forces. Previous model tests of SPAR vessels have shown significant roll and pitch amplitudes, especially during course change maneuvers. Thus, a full 6 DOF equation of motion was employed in the current numerical model. The mathematical model employed in this study was a combination of the model introduced by the Maneuvering Modeling Group (MMG) and the Abkowitz (1964) model. The new model represents the forces applied to the ship hull, the propeller forces and the rudder forces independently, as proposed by the MMG, but uses a 6DOF equation of motion introduced by Abkowitz to describe the motion of a maneuvering ship. The mathematical model was used to simulate the trajectory and motions of the propelled SPAR vessel in 10˚/10˚, 20˚/20˚ and 30˚/30˚ standard zig-zag maneuvers, as well as turning circle tests at rudder angles of 20˚ and 30˚. The simulation results were used to determine the maneuverability parameters (e.g. advance, transfer and tactical diameter) of the vessel. The final model provides the means of predicting and assessing the performance of the vessel type and can be easily adapted to specific vessel configurations based on the generic SPAR-type vessel used in this study.