1 resultado para enterprise social media
em Memorial University Research Repository
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (2)
- Aberdeen University (3)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (22)
- Applied Math and Science Education Repository - Washington - USA (1)
- Archive of European Integration (2)
- Aston University Research Archive (56)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (8)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (21)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (17)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (7)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (6)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (7)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (86)
- DRUM (Digital Repository at the University of Maryland) (3)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (3)
- Instituto Politécnico do Porto, Portugal (13)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (30)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (6)
- QSpace: Queen's University - Canada (2)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (5)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (14)
- Repositório digital da Fundação Getúlio Vargas - FGV (147)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositorio Institucional de la Universidad de Málaga (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (42)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (35)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (3)
- Universidad de Alicante (14)
- Universidad del Rosario, Colombia (15)
- Universidad Politécnica de Madrid (28)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universidade Metodista de São Paulo (13)
- Universidade Técnica de Lisboa (2)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (9)
- University of Canberra Research Repository - Australia (5)
- University of Southampton, United Kingdom (21)
- University of Washington (7)
- WestminsterResearch - UK (8)
Resumo:
The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.