1 resultado para corpus-based translation studies
em Memorial University Research Repository
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (77)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (12)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (44)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (33)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (8)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (47)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (39)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (9)
- Línguas & Letras - Unoeste (2)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (9)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (12)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (54)
- Queensland University of Technology - ePrints Archive (44)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (106)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (11)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (9)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (13)
- Universidade Metodista de São Paulo (5)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal (1)
- Université de Montréal, Canada (25)
- University of Queensland eSpace - Australia (8)
- University of Washington (1)
- WestminsterResearch - UK (4)
Resumo:
In longitudinal data analysis, our primary interest is in the regression parameters for the marginal expectations of the longitudinal responses; the longitudinal correlation parameters are of secondary interest. The joint likelihood function for longitudinal data is challenging, particularly for correlated discrete outcome data. Marginal modeling approaches such as generalized estimating equations (GEEs) have received much attention in the context of longitudinal regression. These methods are based on the estimates of the first two moments of the data and the working correlation structure. The confidence regions and hypothesis tests are based on the asymptotic normality. The methods are sensitive to misspecification of the variance function and the working correlation structure. Because of such misspecifications, the estimates can be inefficient and inconsistent, and inference may give incorrect results. To overcome this problem, we propose an empirical likelihood (EL) procedure based on a set of estimating equations for the parameter of interest and discuss its characteristics and asymptotic properties. We also provide an algorithm based on EL principles for the estimation of the regression parameters and the construction of a confidence region for the parameter of interest. We extend our approach to variable selection for highdimensional longitudinal data with many covariates. In this situation it is necessary to identify a submodel that adequately represents the data. Including redundant variables may impact the model’s accuracy and efficiency for inference. We propose a penalized empirical likelihood (PEL) variable selection based on GEEs; the variable selection and the estimation of the coefficients are carried out simultaneously. We discuss its characteristics and asymptotic properties, and present an algorithm for optimizing PEL. Simulation studies show that when the model assumptions are correct, our method performs as well as existing methods, and when the model is misspecified, it has clear advantages. We have applied the method to two case examples.