3 resultados para climatic conditions

em Memorial University Research Repository


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Archaeological fish otoliths have the potential to serve as proxies for both season of site occupation and palaeoclimate conditions. By sampling along the distinctive sub-annual seasonal bands of the otolith and completing a stable isotope (δ¹⁸O, δ¹³C) analysis, variations within the fish’s environment can be identified. Through the analysis of cod otoliths from two archaeological sites on Kiska Island, Gertrude Cove (KIS-010) and Witchcraft Point (KIS-005), this research evaluates a micromilling methodological approach to extracting climatic data from archaeological cod otoliths. In addition, δ¹⁸Ootolith data and radiocarbon dates frame a discussion of Pacific cod harvesting, site occupation, and changing climatic conditions on Kiska Island. To aid in the interpretation of the archaeological Pacific cod results, archaeological and modern Atlantic cod otoliths were also analyzed as a component of this study to develop. The Atlantic cod otoliths provided the methodological and interpretative framework for the study, and also served to assess the efficacy of this sampling strategy for archaeological materials and to add time-depth to existing datasets. The δ¹⁸Ootolith values successfully illustrate relative variation in ambient water temperature. The Pacific cod δ¹⁸O values demonstrate a weak seasonal signal identifiable up to year 3, followed by relatively stable values until year 6/7 when values continuously increase. Based on the δ¹⁸O values, the Pacific cod were exposed to the coldest water temperatures immediately prior to capture. The lack of a clear cycle of seasonal variation and the continued increase in values towards the otolith edge obscures the season of capture, and indicates that other behavioural, environmental, or methodological factors influenced the otolith δ¹⁸O values. It is suggested that Pacific cod would have been harvested throughout the year, and the presence of cod remains in Aleutian archaeological sites cannot be used as a reliable indicator of summer occupation. In addition, when the δ¹⁸O otolith values are integrated with radiocarbon dates and known climatic regimes, it is demonstrated that climatic conditions play an integral role in the pattern of occupation at Gertrude Cove. Initial site occupation coincides with the end of a neoglacial cooling period, and the most recent and continuous occupation coincides with the end of a localized warming period and the onset of the Little Ice Age (LIA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The successful performance of a hydrological model is usually challenged by the quality of the sensitivity analysis, calibration and uncertainty analysis carried out in the modeling exercise and subsequent simulation results. This is especially important under changing climatic conditions where there are more uncertainties associated with climate models and downscaling processes that increase the complexities of the hydrological modeling system. In response to these challenges and to improve the performance of the hydrological models under changing climatic conditions, this research proposed five new methods for supporting hydrological modeling. First, a design of experiment aided sensitivity analysis and parameterization (DOE-SAP) method was proposed to investigate the significant parameters and provide more reliable sensitivity analysis for improving parameterization during hydrological modeling. The better calibration results along with the advanced sensitivity analysis for significant parameters and their interactions were achieved in the case study. Second, a comprehensive uncertainty evaluation scheme was developed to evaluate three uncertainty analysis methods, the sequential uncertainty fitting version 2 (SUFI-2), generalized likelihood uncertainty estimation (GLUE) and Parameter solution (ParaSol) methods. The results showed that the SUFI-2 performed better than the other two methods based on calibration and uncertainty analysis results. The proposed evaluation scheme demonstrated that it is capable of selecting the most suitable uncertainty method for case studies. Third, a novel sequential multi-criteria based calibration and uncertainty analysis (SMC-CUA) method was proposed to improve the efficiency of calibration and uncertainty analysis and control the phenomenon of equifinality. The results showed that the SMC-CUA method was able to provide better uncertainty analysis results with high computational efficiency compared to the SUFI-2 and GLUE methods and control parameter uncertainty and the equifinality effect without sacrificing simulation performance. Fourth, an innovative response based statistical evaluation method (RESEM) was proposed for estimating the uncertainty propagated effects and providing long-term prediction for hydrological responses under changing climatic conditions. By using RESEM, the uncertainty propagated from statistical downscaling to hydrological modeling can be evaluated. Fifth, an integrated simulation-based evaluation system for uncertainty propagation analysis (ISES-UPA) was proposed for investigating the effects and contributions of different uncertainty components to the total propagated uncertainty from statistical downscaling. Using ISES-UPA, the uncertainty from statistical downscaling, uncertainty from hydrological modeling, and the total uncertainty from two uncertainty sources can be compared and quantified. The feasibility of all the methods has been tested using hypothetical and real-world case studies. The proposed methods can also be integrated as a hydrological modeling system to better support hydrological studies under changing climatic conditions. The results from the proposed integrated hydrological modeling system can be used as scientific references for decision makers to reduce the potential risk of damages caused by extreme events for long-term water resource management and planning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five long piston cores collected from different subbasins of the Aegean Sea constitute the primary source of data for this PhD thesis. This study is the first to document a continuous paleoceanographic and paleoclimatic record of the Aegean Sea since the last interglacial. The chronostratigraphic reconstructions of the cored sediments based on organic carbon contents, stratigraphic position of known ash layers and oxygen isotopic curve matching collectively demonstrate the presence of sapropel S1 and MISS sapropels S3, S4 and S5 in the Aegean Sea subbasins. Generally, the organic carbon (TOC wt%) contents in sapropels range between 0.8% and 2% with highest concentrations of 9-13% in sapropels S4 and S5. Average sedimentation rates range between 4.7 and 11.8 cmlka with highest rates being observed in Euboea and North Ikaria basins (9.8 and 11.8 cm lka, respectively). The timing of the onset of sapropels S4 and S5 mostly predate those in the eastern Mediterranean with ages ranging from 106.4-105.6 and 128.6-128.4 ka BP, respectively. On the other hand, the initiation of the onset of sapropel S3 (i.e., 83.2-80.4 ka BP) seems to agree with its Mediterranean counterparts, which highlights the heterogeneity of the Aegean Sea subbasins in terms of rapid vs. lagged response to changing climatic conditions. The sapropel initiations appear to be synchronous across the Aegean Sea; whereas, the terminations display a wider temporal variability implying that the cessation of sapropels is controlled both by the amplitude of paleoclimatic changes and the physiography/location ofthe subbasins. Quantitative variations in the planktonic faunal assemblages exhibit a sequence of bioevents during the last -130,000 years which allow identification of four major biozones. The distributional patterns of the most significant taxa demonstrate similar trends among all core localities suggesting that the major changes in the planktonic foraminifera assemblages have taken place rather synchronously in the Aegean Sea. Sapropels S3, S4 and S5 were deposited under similar hydrographic conditions during which a distinct deep chlorophyll maximum (DCM) layer was established. This situation points to a stratified water column and increased export productivity during times of sapropel formation. On the other hand, the faunal contrast between Sl and older sapropels indicates that the former was developed in the absence of a DCM layer, lacking a deep phytoplankton assemblage. Under such conditions, oxygen advection via intermediate water flow must have been significantly reduced which implies significant stagnation. Sapropels are interpreted to have been deposited under normal marine conditions with temporary establishment of semi-euxinic bottom water conditions. Both marine and terrestrial organic matter contributed equally to MISS sapropels. In addition, organic carbon isotopic values across sapropels are more depleted than those in the eastern Mediterranean which, in tum, suggests enhanced riverine input during their deposition. Primary productivity calculations show that, particularly for sapropels with very high TOC values, both preservation and increased productivity are imperative in order to deposit sapropels with very high organic carbon contents (i.e., up to 13%).