1 resultado para big data, data consumption
em Memorial University Research Repository
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (2)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (3)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (35)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (18)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (38)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (7)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- DRUM (Digital Repository at the University of Maryland) (7)
- Duke University (5)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (1)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Indian Institute of Science - Bangalore - Índia (10)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (9)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Memorial University Research Repository (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Periódicos Eletrônicos da UFPB (1)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (25)
- Queensland University of Technology - ePrints Archive (309)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (6)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (20)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (4)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad de Málaga (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- Repositorio Institucional Universidad Católica de Colombia (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (10)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (34)
- Universidade Complutense de Madrid (11)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (2)
- Universita di Parma (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (2)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (3)
- University of Michigan (21)
- University of Southampton, United Kingdom (14)
- University of Washington (5)
- WestminsterResearch - UK (7)
Resumo:
The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.