3 resultados para benzo[a]pyrene toxic equivalence

em Memorial University Research Repository


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Produced water is a by-product of offshore oil and gas production, and is released in large volumes when platforms are actively processing crude oil. Some pollutants are not typically removed by conventional oil/water separation methods and are discharged with produced water. Oil and grease can be found dispersed in produced water in the form of tiny droplets, and polycyclic aromatic hydrocarbons (PAHs) are commonly found dissolved in produced water. Both can have acute and chronic toxic effects in marine environments even at low exposure levels. The analysis of the dissolved and dispersed phases are a priority, but effort is required to meet the necessary detection limits. There are several methods for the analysis of produced water for dispersed oil and dissolved PAHs, all of which have advantages and disadvantages. In this work, EPA Method 1664 and APHA Method 5520 C for the determination of oil and grease will be examined and compared. For the detection of PAHs, EPA Method 525 and PAH MIPs will be compared, and results evaluated. APHA Method 5520 C Partition-Infrared Method is a liquid-liquid extraction procedure with IR determination of oil and grease. For analysis on spiked samples of artificial seawater, extraction efficiency ranged from 85 – 97%. Linearity was achieved in the range of 5 – 500 mg/L. This is a single-wavelength method and is unsuitable for quantification of aromatics and other compounds that lack sp³-hybridized carbon atoms. EPA Method 1664 is the liquid-liquid extraction of oil and grease from water samples followed by gravimetric determination. When distilled water spiked with reference oil was extracted by this procedure, extraction efficiency ranged from 28.4 – 86.2%, and %RSD ranged from 7.68 – 38.0%. EPA Method 525 uses solid phase extraction with analysis by GC-MS, and was performed on distilled water and water from St. John’s Harbour, all spiked with naphthalene, fluorene, phenanthrene, and pyrene. The limits of detection in harbour water were 0.144, 3.82, 0.119, and 0.153 g/L respectively. Linearity was obtained in the range of 0.5-10 g/L, and %RSD ranged from 0.36% (fluorene) to 46% (pyrene). Molecularly imprinted polymers (MIPs) are sorbent materials made selective by polymerizing functional monomers and crosslinkers in the presence of a template molecule, usually the analytes of interest or related compounds. They can adsorb and concentrate PAHs from aqueous environments and are combined with methods of analysis including GC-MS, LC-UV-Vis, and desorption electrospray ionization (DESI)- MS. This work examines MIP-based methods as well as those methods previously mentioned which are currently used by the oil and gas industry and government environmental agencies. MIPs are shown to give results consistent with other methods, and are a low-cost alternative improving ease, throughput, and sensitivity. PAH MIPs were used to determine naphthalene spiked into ASTM artificial seawater, as well as produced water from an offshore oil and gas operation. Linearity was achieved in the range studied (0.5 – 5 mg/L) for both matrices, with R² = 0.936 for seawater and R² = 0.819 for produced water. The %RSD for seawater ranged from 6.58 – 50.5% and for produced water, from 8.19 – 79.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spent hydroprocessing catalysts (HPCs) are solid wastes generated in refinery industries and typically contain various hazardous metals, such as Co, Ni, and Mo. These wastes cannot be discharged into the environment due to strict regulations and require proper treatment to remove the hazardous substances. Various options have been proposed and developed for spent catalysts treatment; however, hydrometallurgical processes are considered efficient, cost-effective and environmentally-friendly methods of metal extraction, and have been widely employed for different metal uptake from aqueous leachates of secondary materials. Although there are a large number of studies on hazardous metal extraction from aqueous solutions of various spent catalysts, little information is available on Co, Ni, and Mo removal from spent NiMo hydroprocessing catalysts. In the current study, a solvent extraction process was applied to the spent HPC to specifically remove Co, Ni, and Mo. The spent HPC is dissolved in an acid solution and then the metals are extracted using three different extractants, two of which were aminebased and one which was a quaternary ammonium salt. The main aim of this study was to develop a hydrometallurgical method to remove, and ultimately be able to recover, Co, Ni, and Mo from the spent HPCs produced at the petrochemical plant in Come By Chance, Newfoundland and Labrador. The specific objectives of the study were: (1) characterization of the spent catalyst and the acidic leachate, (2) identifying the most efficient leaching agent to dissolve the metals from the spent catalyst; (3) development of a solvent extraction procedure using the amine-based extractants Alamine308, Alamine336 and the quaternary ammonium salt, Aliquat336 in toluene to remove Co, Ni, and Mo from the spent catalyst; (4) selection of the best reagent for Co, Ni, and Mo extraction based on the required contact time, required extractant concentration, as well as organic:aqueous ratio; and (5) evaluation of the extraction conditions and optimization of the metal extraction process using the Design Expert® software. For the present study, a Central Composite Design (CCD) method was applied as the main method to design the experiments, evaluate the effect of each parameter, provide a statistical model, and optimize the extraction process. Three parameters were considered as the most significant factors affecting the process efficiency: (i) extractant concentration, (ii) the organic:aqueous ratio, and (iii) contact time. Metal extraction efficiencies were calculated based on ICP analysis of the pre- and post–leachates, and the process optimization was conducted with the aid of the Design Expert® software. The obtained results showed that Alamine308 can be considered to be the most effective and suitable extractant for spent HPC examined in the study. Alamine308 is capable of removing all three metals to the maximum amounts. Aliquat336 was found to be not as effective, especially for Ni extraction; however, it is able to separate all of these metals within the first 10 min, unlike Alamine336, which required more than 35 min to do so. Based on the results of this study, a cost-effective and environmentally-friendly solventextraction process was achieved to remove Co, Ni, and Mo from the spent HPCs in a short amount of time and with the low extractant concentration required. This method can be tested and implemented for other hazardous metals from other secondary materials as well. Further investigation may be required; however, the results of this study can be a guide for future research on similar metal extraction processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For fifty years (1949–99) the now-abandoned Giant Mine in Yellowknife emitted arsenic air and water pollution into the surrounding environment. Arsenic pollution from Giant Mine had particularly acute health impacts on the nearby Yellowknives Dene First Nation (YKDFN), who were reliant on local lakes, rivers, and streams for their drinking water, in addition to frequent use of local berries, garden produce, and medicine plants. Currently, the Canadian government is undertaking a remediation project at Giant Mine to clean up contaminated soils and tailings on the surface and contain 237,000 tonnes of arsenic dust that are stored underground at the Giant Mine. Using documentary sources and statements of Yellowknives Dene members before various public hearings on the arsenic issue, this paper examines the history of arsenic pollution at Giant Mine as a form of “slow violence,” a concept that reconfigures the arsenic issue not simply as a technical problem, but as a historical agent of colonial dispossession that alienated an Indigenous group from their traditional territory. The long-term storage of arsenic at the former mine site means the effects of this slow violence are not merely historical, but extend to the potentially far distant future.