3 resultados para arbitrary sharing configurations

em Memorial University Research Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we introduce DeReEs-4v, an algorithm for unsupervised and automatic registration of two video frames captured depth-sensing cameras. DeReEs-4V receives two RGBD video streams from two depth-sensing cameras arbitrary located in an indoor space that share a minimum amount of 25% overlap between their captured scenes. The motivation of this research is to employ multiple depth-sensing cameras to enlarge the field of view and acquire a more complete and accurate 3D information of the environment. A typical way to combine multiple views from different cameras is through manual calibration. However, this process is time-consuming and may require some technical knowledge. Moreover, calibration has to be repeated when the location or position of the cameras change. In this research, we demonstrate how DeReEs-4V registration can be used to find the transformation of the view of one camera with respect to the other at interactive rates. Our algorithm automatically finds the 3D transformation to match the views from two cameras, requires no human interference, and is robust to camera movements while capturing. To validate this approach, a thorough examination of the system performance under different scenarios is presented. The system presented here supports any application that might benefit from the wider field-of-view provided by the combined scene from both cameras, including applications in 3D telepresence, gaming, people tracking, videoconferencing and computer vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work examines atiku-euiash (caribou meat) sharing practices in Sheshatshiu, Newfoundland and Labrador, and aims to elucidate an overarching question: how do sharing practices participate in the co-constitution of the Innu ‘social’? The ‘social’ is understood in this work as a descriptor that refers to the emergent properties of the Innu collective. The thesis is that sharing practices participate in the co-constitution of the Innu social and enact its boundaries. Inside these boundaries, atiku-euiash is more than simply a food resource: by realizing Innu values of generosity, respect and autonomy, sharing implicates the associations of human, animal, and animal masters that constitute the Innu world. Sharing is connected with the enskilment of the younger generations by their el-ders, and thus with the reproduction of Innu values through time. The ways of sharing are relevant because changes in such practices affect the constitution of the Innu social. Giv-en Euro-Canadian colonization, the Innu are in a fraught social space in which sharing is interrupted by colonization practices and values. Understanding sharing is necessary to develop policies that do not interrupt the reproduction of the Innu world This work uses several research methods: participant observation, sharing surveys, and interviews. It also uses network analysis as sharing practices leave traces of giving and receiving actions and these traces can be represented as a network of givers, receivers and circulating caribou meat. There are two main ways in which caribou is hunted and shared: household-based hunts and community-based hunts. The household-based hunts are organized by the hunters themselves, who are able and willing to hunt. Community-based hunts are completely organized and funded by the SIFN or the Innu Nation. In or-der to understand the differences in the distribution of the two hunt types, the categories of centrality and clustering are used to show how the flow of atiku-eiuash and its associ-ated realization of values and enskilment correlate with different degrees of centralization inside the sharing clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal analysis of electronic devices is one of the most important steps for designing of modern devices. Precise thermal analysis is essential for designing an effective thermal management system of modern electronic devices such as batteries, LEDs, microelectronics, ICs, circuit boards, semiconductors and heat spreaders. For having a precise thermal analysis, the temperature profile and thermal spreading resistance of the device should be calculated by considering the geometry, property and boundary conditions. Thermal spreading resistance occurs when heat enters through a portion of a surface and flows by conduction. It is the primary source of thermal resistance when heat flows from a tiny heat source to a thin and wide heat spreader. In this thesis, analytical models for modeling the temperature behavior and thermal resistance in some common geometries of microelectronic devices such as heat channels and heat tubes are investigated. Different boundary conditions for the system are considered. Along the source plane, a combination of discretely specified heat flux, specified temperatures and adiabatic condition are studied. Along the walls of the system, adiabatic or convective cooling boundary conditions are assumed. Along the sink plane, convective cooling with constant or variable heat transfer coefficient are considered. Also, the effect of orthotropic properties is discussed. This thesis contains nine chapters. Chapter one is the introduction and shows the concepts of thermal spreading resistance besides the originality and importance of the work. Chapter two reviews the literatures on the thermal spreading resistance in the past fifty years with a focus on the recent advances. In chapters three and four, thermal resistance of a twodimensional flux channel with non-uniform convection coefficient in the heat sink plane is studied. The non-uniform convection is modeled by using two functions than can simulate a wide variety of different heat sink configurations. In chapter five, a non-symmetrical flux channel with different heat transfer coefficient along the right and left edges and sink plane is analytically modeled. Due to the edge cooling and non-symmetry, the eigenvalues of the system are defined using the heat transfer coefficient on both edges and for satisfying the orthogonality condition, a normalized function is calculated. In chapter six, thermal behavior of two-dimensional rectangular flux channel with arbitrary boundary conditions on the source plane is presented. The boundary condition along the source plane can be a combination of the first kind boundary condition (Dirichlet or prescribed temperature) and the second kind boundary condition (Neumann or prescribed heat flux). The proposed solution can be used for modeling the flux channels with numerous different source plane boundary conditions without any limitations in the number and position of heat sources. In chapter seven, temperature profile of a circular flux tube with discretely specified boundary conditions along the source plane is presented. Also, the effect of orthotropic properties are discussed. In chapter 8, a three-dimensional rectangular flux channel with a non-uniform heat convection along the heat sink plane is analytically modeled. In chapter nine, a summary of the achievements is presented and some systems are proposed for the future studies. It is worth mentioning that all the models and case studies in the thesis are compared with the Finite Element Method (FEM).