2 resultados para application availability

em Memorial University Research Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Availability” is the terminology used in asset intensive industries such as petrochemical and hydrocarbons processing to describe the readiness of equipment, systems or plants to perform their designed functions. It is a measure to suggest a facility’s capability of meeting targeted production in a safe working environment. Availability is also vital as it encompasses reliability and maintainability, allowing engineers to manage and operate facilities by focusing on one performance indicator. These benefits make availability a very demanding and highly desired area of interest and research for both industry and academia. In this dissertation, new models, approaches and algorithms have been explored to estimate and manage the availability of complex hydrocarbon processing systems. The risk of equipment failure and its effect on availability is vital in the hydrocarbon industry, and is also explored in this research. The importance of availability encouraged companies to invest in this domain by putting efforts and resources to develop novel techniques for system availability enhancement. Most of the work in this area is focused on individual equipment compared to facility or system level availability assessment and management. This research is focused on developing an new systematic methods to estimate system availability. The main focus areas in this research are to address availability estimation and management through physical asset management, risk-based availability estimation strategies, availability and safety using a failure assessment framework, and availability enhancement using early equipment fault detection and maintenance scheduling optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-alternating-gas (WAG) is an enhanced oil recovery method combining the improved macroscopic sweep of water flooding with the improved microscopic displacement of gas injection. The optimal design of the WAG parameters is usually based on numerical reservoir simulation via trial and error, limited by the reservoir engineer’s availability. Employing optimisation techniques can guide the simulation runs and reduce the number of function evaluations. In this study, robust evolutionary algorithms are utilized to optimise hydrocarbon WAG performance in the E-segment of the Norne field. The first objective function is selected to be the net present value (NPV) and two global semi-random search strategies, a genetic algorithm (GA) and particle swarm optimisation (PSO) are tested on different case studies with different numbers of controlling variables which are sampled from the set of water and gas injection rates, bottom-hole pressures of the oil production wells, cycle ratio, cycle time, the composition of the injected hydrocarbon gas (miscible/immiscible WAG) and the total WAG period. In progressive experiments, the number of decision-making variables is increased, increasing the problem complexity while potentially improving the efficacy of the WAG process. The second objective function is selected to be the incremental recovery factor (IRF) within a fixed total WAG simulation time and it is optimised using the same optimisation algorithms. The results from the two optimisation techniques are analyzed and their performance, convergence speed and the quality of the optimal solutions found by the algorithms in multiple trials are compared for each experiment. The distinctions between the optimal WAG parameters resulting from NPV and oil recovery optimisation are also examined. This is the first known work optimising over this complete set of WAG variables. The first use of PSO to optimise a WAG project at the field scale is also illustrated. Compared to the reference cases, the best overall values of the objective functions found by GA and PSO were 13.8% and 14.2% higher, respectively, if NPV is optimised over all the above variables, and 14.2% and 16.2% higher, respectively, if IRF is optimised.