2 resultados para active power loss minimization
em Memorial University Research Repository
Resumo:
The Solid Oxide Fuel Cell (SOFC) is a class of fuel cells that is capable of generating very high levels of power at high temperatures. SOFCs are used for stationary power generation and as Combined Heat and Power (CHP) systems. In spite of all the beneficial features of the SOFC, the propagation of ripple currents, due to nonlinear loads, is a challenging problem, as it interferes with the physical operation of the fuel cell. The purpose of this thesis is to identify the cause of ripples and attempt to eliminate or reduce the ripple propagation through the use of Active Power Filters (APF). To this end, a systematic approach to modeling the fuel cell to account for its nonlinear behavior in the presence of current ripples is presented. A model of a small fuel cell power system which consists of a fuel cell, a DC-DC converter, a single-phase inverter and a nonlinear load is developed in MATLAB/Simulink environment. The extent of ripple propagation, due to variations in load magnitude and frequency, are identified using frequency spectrum analysis. In order to reduce the effects of ripple propagation, an APF is modeled to remove ripples from the DC fuel cell current. The emphasis of this thesis is based on the idea that small fuel cell systems cannot implement large passive filters to cancel the effects of ripple propagation and hence, the compact APF topology effectively protects the fuel cell from propagating ripples and improves its electrical performance.
Resumo:
Cooperative communication has gained much interest due to its ability to exploit the broadcasting nature of the wireless medium to mitigate multipath fading. There has been considerable amount of research on how cooperative transmission can improve the performance of the network by focusing on the physical layer issues. During the past few years, the researchers have started to take into consideration cooperative transmission in routing and there has been a growing interest in designing and evaluating cooperative routing protocols. Most of the existing cooperative routing algorithms are designed to reduce the energy consumption; however, packet collision minimization using cooperative routing has not been addressed yet. This dissertation presents an optimization framework to minimize collision probability using cooperative routing in wireless sensor networks. More specifically, we develop a mathematical model and formulate the problem as a large-scale Mixed Integer Non-Linear Programming problem. We also propose a solution based on the branch and bound algorithm augmented with reducing the search space (branch and bound space reduction). The proposed strategy builds up the optimal routes from each source to the sink node by providing the best set of hops in each route, the best set of relays, and the optimal power allocation for the cooperative transmission links. To reduce the computational complexity, we propose two near optimal cooperative routing algorithms. In the first near optimal algorithm, we solve the problem by decoupling the optimal power allocation scheme from optimal route selection. Therefore, the problem is formulated by an Integer Non-Linear Programming, which is solved using a branch and bound space reduced method. In the second near optimal algorithm, the cooperative routing problem is solved by decoupling the transmission power and the relay node se- lection from the route selection. After solving the routing problems, the power allocation is applied in the selected route. Simulation results show the algorithms can significantly reduce the collision probability compared with existing cooperative routing schemes.