1 resultado para Weighted histogram analysis method
em Memorial University Research Repository
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (20)
- B-Digital - Universidade Fernando Pessoa - Portugal (3)
- Biblioteca de Teses e Dissertações da USP (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (14)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (54)
- CentAUR: Central Archive University of Reading - UK (14)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (134)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (10)
- DigitalCommons@The Texas Medical Center (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (13)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (61)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Santarém (2)
- Instituto Politécnico do Porto, Portugal (3)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (51)
- Queensland University of Technology - ePrints Archive (107)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (15)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de La Laguna (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (104)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (20)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (19)
- Universidade Metodista de São Paulo (1)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (17)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Queensland eSpace - Australia (10)
- University of Washington (4)
- WestminsterResearch - UK (2)
Resumo:
Rapid development in industry have contributed to more complex systems that are prone to failure. In applications where the presence of faults may lead to premature failure, fault detection and diagnostics tools are often implemented. The goal of this research is to improve the diagnostic ability of existing FDD methods. Kernel Principal Component Analysis has good fault detection capability, however it can only detect the fault and identify few variables that have contribution on occurrence of fault and thus not precise in diagnosing. Hence, KPCA was used to detect abnormal events and the most contributed variables were taken out for more analysis in diagnosis phase. The diagnosis phase was done in both qualitative and quantitative manner. In qualitative mode, a networked-base causality analysis method was developed to show the causal effect between the most contributing variables in occurrence of the fault. In order to have more quantitative diagnosis, a Bayesian network was constructed to analyze the problem in probabilistic perspective.