2 resultados para W600 Cinematics and Photography
em Memorial University Research Repository
Resumo:
This Ph.D. thesis addresses current issues with ichnotaxonomic practice, and characterizes an exceptionally well preserved ichnological assemblage from the Carboniferous Stainmore Formation, Northumberland, United Kingdom. Samples were collected from closely localized float representative of various units throughout the succession, which was deposited in a storm-dominated marine shoreface. Three dominant ichnotaxa were selected for three-dimensional morphological analysis due to their complicated morphology and/or unclear taxonomic status: 1) Dactyloidites jordii isp. nov.; 2) Beaconites capronus, and; 3) Neoeione moniliformis comb. nov. Using serial grinding and photography, these ichnotaxa were ground and modelled in true colour. High-resolution models of three taxa produced in this study are the basis of the first complete three-dimensional consideration of the traces, and forms the basis for refined palaeobiological and ethological analysis of these taxa. Dactyloidites jordii isp. nov. is a stellate to palmate burrow composed of numerous long, narrow rays that exhibit three orders of branching arranged into tiered galleries radiating from a central shaft. It is considered to be the feeding structure produced by a vermiform organism. Beaconites capronus is a winding trace with distinctly chevron-shaped, meniscate backfill demonstrated herein to backfill the vertical shafts associated with its burrows in a comparable fashion to the horizontal portion of the burrow. This lack of a surface connection would result in the trace making organism being exposed to low-oxygen porewater. Coping with this porewater dysoxia could be approached by burrowing organisms in a number of ways: 1) revisiting the sediment-water interface; 2) creating periodic shafts; or 3) employing anaerobic metabolism. Neoeione moniliformis was originally introduced as Eione moniliformis, however, the genus Eione Tate, 1859 is a junior homonym of Eione Rafinesque, 1814. This led to the transfer of Eione moniliformis to Parataenidium. Through careful examination and three-dimensional characterization of topotypes, the transfer to Parataenidium moniliformis is demonstrated herein to be problematic, as Parataenidium refers to primarily horizontal burrows with two distinct layers and Eione moniliformis is composed of one distinct level. As such, the new ichnogenus Neoeione is created to accommodate Neoeione moniliformis.
Resumo:
The community of Ferryland is located on the southeastern coast of the Avalon Peninsula. The town traditionally relied on a fishing-based economy until the collapse of the fishery in the early 1990s. The present economy emphasizes sustainable development in the tourism sector with focus on archaeology, geotourism and other recreational uses. This paper discusses coastal erosion and impacts on sites and infrastructure using methods including: local knowledge, Real Time Kinematic (RTK) surveying and other survey techniques, seawater level measurement, meteorological data from a locally-installed station, custom-made drifter tube buoys, photography, HD video, and investigation using various modes of transport including inflatable boat. The major findings of the study include that the residents and stakeholders are genuinely interested in and knowledgeable of coastal erosion. The causes of coastal erosion include: large waves, surge, longshore currents, harbour oscillations, mass wasting, and location of infrastructure causing alterations of these processes. Freeze-thaw Cycles (FTC), rainfall, and gravity loosen and transport rock, till, and fill materials downslope. Large waves and currents transport the materials alongshore or into the nearshore. Harbour oscillations causing high velocity currents (> 2 m/s) are responsible for shoreline erosion and damage to property in The Pool. Historical resources such as gun batteries and ordnance pieces which date to the 1700s are being lost or threatened through coastal erosion of till and rock cliffs. Improper drainage and maintenance is responsible for erosion of roads and supporting shoulders, necessitating mitigation measures. Sediment transport and deposition during and after large wave and surge events lead to undercutting of infrastructure and increased risk of washover of existing infrastructure. Erosion is ongoing at Bois Island and Ferryland Head Isthmus through slope processes and undercutting; The Pool and the lower Colony of Avalon site through harbour oscillations and related undermining; the tombolo and the main breakwater through wave attack; and Meade’s Cove including the East Coast Trail through wave attack and undercutting. The floor of the latrine in the lower Colony of Avalon site indicates that sea level was approximately 1.25m below present in the 1620s, a relative sea level rise rate of 3.2 mm/y. The recommendations include suggested mitigation to reduce impacts specific to each site.