3 resultados para Treillis iceberg
em Memorial University Research Repository
Resumo:
This thesis reports on a novel method to build a 3-D model of the above-water portion of icebergs using surface imaging. The goal is to work towards the automation of iceberg surveys, allowing an Autonomous Surface Craft (ASC) to acquire shape and size information. After collecting data and images, the core software algorithm is made up of three parts: occluding contour finding, volume intersection, and parameter estimation. A software module is designed that could be used on the ASC to perform automatic and fast processing of above-water surface image data to determine iceberg shape and size measurement and determination. The resolution of the method is calculated using data from the iceberg database of the Program of Energy Research and Development (PERD). The method was investigated using data from field trials conducted through the summer of 2014 by surveying 8 icebergs during 3 expeditions. The results were analyzed to determine iceberg characteristics. Limitations of this method are addressed including its accuracy. Surface imaging system and LIDAR system are developed to profile the above-water iceberg in 2015.
Resumo:
This thesis investigated the risk of accidental release of hydrocarbons during transportation and storage. Transportation of hydrocarbons from an offshore platform to processing units through subsea pipelines involves risk of release due to pipeline leakage resulting from corrosion, plastic deformation caused by seabed shakedown or damaged by contact with drifting iceberg. The environmental impacts of hydrocarbon dispersion can be severe. Overall safety and economic concerns of pipeline leakage at subsea environment are immense. A large leak can be detected by employing conventional technology such as, radar, intelligent pigging or chemical tracer but in a remote location like subsea or arctic, a small chronic leak may be undetected for a period of time. In case of storage, an accidental release of hydrocarbon from the storage tank could lead pool fire; further it could escalate to domino effects. This chain of accidents may lead to extremely severe consequences. Analyzing past accident scenarios it is observed that more than half of the industrial domino accidents involved fire as a primary event, and some other factors for instance, wind speed and direction, fuel type and engulfment of the compound. In this thesis, a computational fluid dynamics (CFD) approach is taken to model the subsea pipeline leak and the pool fire from a storage tank. A commercial software package ANSYS FLUENT Workbench 15 is used to model the subsea pipeline leakage. The CFD simulation results of four different types of fluids showed that the static pressure and pressure gradient along the axial length of the pipeline have a sharp signature variation near the leak orifice at steady state condition. Transient simulation is performed to obtain the acoustic signature of the pipe near leak orifice. The power spectral density (PSD) of acoustic signal is strong near the leak orifice and it dissipates as the distance and orientation from the leak orifice increase. The high-pressure fluid flow generates more noise than the low-pressure fluid flow. In order to model the pool fire from the storage tank, ANSYS CFX Workbench 14 is used. The CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries. The attempt to reduce and prevent risks is discussed based on the results obtained from the numerical simulations of the numerical models.
Resumo:
In this thesis, the first-order radar cross section (RCS) of an iceberg is derived and simulated. This analysis takes place in the context of a monostatic high frequency surface wave radar with a vertical dipole source that is driven by a pulsed waveform. The starting point of this work is a general electric field equation derived previ- ously for an arbitrarily shaped iceberg region surrounded by an ocean surface. The condition of monostatic backscatter is applied to this general field equation and the resulting expression is inverse Fourier transformed. In the time domain the excitation current of the transmit antenna is specified to be a pulsed sinusoid signal. The result- ing electric field equation is simplified and its physical significance is assessed. The field equation is then further simplified by restricting the iceberg's size to fit within a single radar patch width. The power received by the radar is calculated using this electric field equation. Comparing the received power with the radar range equation gives a general expression for the iceberg RCS. The iceberg RCS equation is found to depend on several parameters including the geometry of the iceberg, the radar frequency, and the electrical parameters of both the iceberg and the ocean surface. The RCS is rewritten in a form suitable for simulations and simulations are carried out for rectangularly shaped icebergs. Simulation results are discussed and are found to be consistent with existing research.