1 resultado para TRAINING SET
em Memorial University Research Repository
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Archive of European Integration (2)
- Aston University Research Archive (18)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (148)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (6)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (65)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (2)
- Digital Archives@Colby (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (10)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Institute of Public Health in Ireland, Ireland (37)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (52)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (66)
- Martin Luther Universitat Halle Wittenberg, Germany (7)
- Massachusetts Institute of Technology (4)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (7)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (38)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (2)
- Repositório da Escola Nacional de Administração Pública (ENAP) (2)
- Repositório da Produção Científica e Intelectual da Unicamp (18)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (5)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (2)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (28)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (38)
- Scielo Saúde Pública - SP (30)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (21)
- Universidade dos Açores - Portugal (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (134)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (16)
- University of Queensland eSpace - Australia (100)
Resumo:
The social media classification problems draw more and more attention in the past few years. With the rapid development of Internet and the popularity of computers, there is astronomical amount of information in the social network (social media platforms). The datasets are generally large scale and are often corrupted by noise. The presence of noise in training set has strong impact on the performance of supervised learning (classification) techniques. A budget-driven One-class SVM approach is presented in this thesis that is suitable for large scale social media data classification. Our approach is based on an existing online One-class SVM learning algorithm, referred as STOCS (Self-Tuning One-Class SVM) algorithm. To justify our choice, we first analyze the noise-resilient ability of STOCS using synthetic data. The experiments suggest that STOCS is more robust against label noise than several other existing approaches. Next, to handle big data classification problem for social media data, we introduce several budget driven features, which allow the algorithm to be trained within limited time and under limited memory requirement. Besides, the resulting algorithm can be easily adapted to changes in dynamic data with minimal computational cost. Compared with two state-of-the-art approaches, Lib-Linear and kNN, our approach is shown to be competitive with lower requirements of memory and time.